

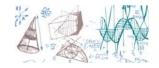
Introduction to probability, statistics and data handling

Agnieszka Obłąkowska-Mucha Tomasz Szumlak

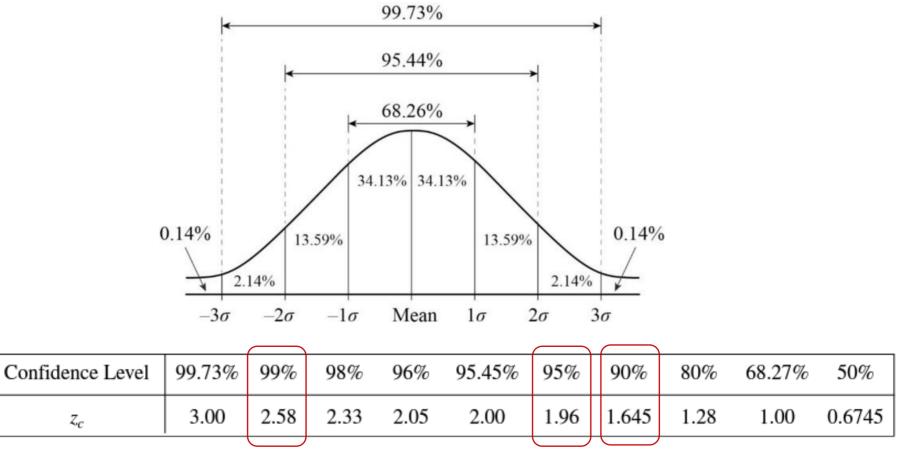
Faculty of Physics and Applied Computer Science AGH University of Krakow

- Statistical statements regarding R.Vs. and probability should always be interpreted in terms of model parameters and confidence
- We express the confidence using fractional numbers (%). So, we could say, for instance, a κ% confidence interval for parameter θ (based on an actual observation) is the interval from θ₋ to θ₊, where κ% → 99%, 95%, 90%, ...
- Its meaning is as follow: if we observe an event with the prob. of 95% we say it is reasonable, on the other hand if this is just 5% it should be considered **unlikely**
- So, what left now is to evaluate the confidence interval, we reserve for example 5% of probability for "strange" events and consider both cases too-low-strange and too-highstrange
- This is, so called, two tailed or two-sided confidence interval and we have reserved 2.5% probability for very high and very low results

C.I. for the normal distribution



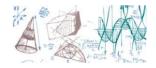
• We already know a lot about evaluating probabilities using the normal distribution



z-score for CL

Statistics - Computer Science AGH University of Krakow

C.I. for the normal distribution



• Using the plot or the table from the previous slide we write for the critical values $z_c = \pm 1.96$, which corresponds to the confidence level of 95%:

$$P\left(-1.96 \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le 1.96\right) = 0.95$$

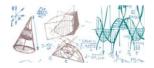
 As usual, there are some tricks... For instance if we knew the distribution variance (remember the normal model has two parameters!) we could immediately solve these inequalities

$$P\left(\overline{X} - 1.96\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + 1.96\frac{\sigma}{\sqrt{n}}\right) = 0.95$$

• This is a random interval, defined around the sample mean, which contains the unknown population mean with the probability of 95%. So, the 95% C.I. for μ is given by

$$C.I._{95\%}^{\mathcal{N}} = \left(\bar{X} - 1.96\frac{\sigma}{\sqrt{n}}, \bar{X} + 1.96\frac{\sigma}{\sqrt{n}}\right)$$

C.I. for the normal distribution



• A general formula that can be applied for the normal distribution for its mean is then

$$C.I._{100\cdot(1-\alpha)\%}^{\mathcal{N}} = \left(\overline{X} - z_c \frac{\sigma}{\sqrt{n}}, \overline{X} + z_c \frac{\sigma}{\sqrt{n}}\right)$$

Nice, but... what if we do not know the distribution variance (and we usually do not)? The
most sensible approach would be to use the sample variance to estimate σ²

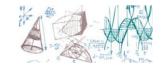
$$S^2 = \frac{1}{n-1} \sum_i (X_i - \bar{X})^2 \rightarrow E[S^2] = \sigma^2$$

• We define a new R.V. T

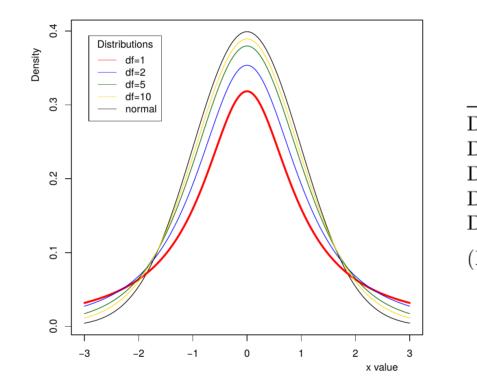
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \to P\left(-t \le \frac{\overline{X} - \mu}{S/\sqrt{n}} \le t\right) = 1 - \alpha$$

The R.V. T follows the Student's t-distribution (actually there is a whole family of distribution) T~t(v)

t-distribution



t-distribution is similar to the normal one (obviously!)



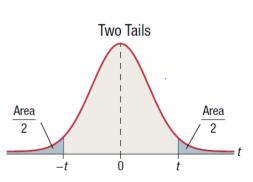
	50%	90%	95%	99%	99.9%
DF=5	0.73	2.02	2.57	4.03	6.87
DF=10	0.70	1.81	2.23	3.17	4.59
DF=20	0.69	1.72	2.09	2.85	3.85
DF=30	0.68	1.70	2.04	2.75	3.65
DF=50	0.68	1.68	2.01	2.68	3.50
(Normal)	0.67	1.64	1.96	2.58	3.29

- The larger the v the more resemblance to the normal curve
- We use tables to evaluate the critical values t_c for a given confidence levels, let's continue on the next slide...

t-distribution

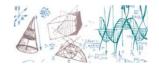
t Distribution: Critical Values of t							
		Significance level					
Degrees of	Two-tailed test:	10%	5%	2%	1%	0.2%	0.1%
freedom	One-tailed test:	5%	2.5%	1%	0.5%	0.1%	0.05%
1		6.314	12.706	31.821	63.657	318.309	636.619
2		2.920	4.303	6.965	9.925	22.327	31.599
3		2.353	3.182	4.541	5.841	10.215	12.924
4		2.132	2.776	3.747	4.604	7.173	8.610
5		2.015	2.571	3.365	4.032	5.893	6.869
6		1.943	2.447	3.143	3.707	5.208	5.959
7		1.894	2.365	2.998	3.499	4.785	5.408
8		1.860	2.306	2.896	3.355	4.501	5.041
9		1.833	2.262	2.821	3.250	4.297	4.781
10		1.812	2.228	2.764	3.169	4.144	4.587
11		1.796	2.201	2.718	3.106	4.025	4.437
12		1.782	2.179	2.681	3.055	3.930	4.318
13		1.771	2.160	2.650	3.012	3.852	4.221
14		1.761	2.145	2.624	2.977	3.787	4.140
15		1.753	2.131	2.602	2.947	3.733	4.073

Left Tail Area -t 0 Right Tail Area



0

C.I. for t-distribution



 Start with some formalities... If we draw a sample of size n from a normal distribution with the mean μ, the R.V. T

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(\nu = n - 1)$$

• Where \overline{X} is the sample mean and S its standard deviation

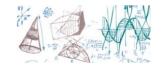
$$P\left(-t_c \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le t_c\right) = 1 - \alpha$$

$$P\left(\bar{X} - t_c \frac{S}{\sqrt{n}} \le \mu \le \bar{X} + t_c \frac{S}{\sqrt{n}}\right) = 1 - \alpha$$

• And the *C*.*I*. is centred about the sample mean, which contains the true unknown population parameter μ with probability $1 - \alpha$

$$C.I._{100\cdot(1-\alpha)}^{t} = \left(\overline{X} - t_c \frac{S}{\sqrt{n}}, \overline{X} + t_c \frac{S}{\sqrt{n}}\right)$$

Examples – C.I.

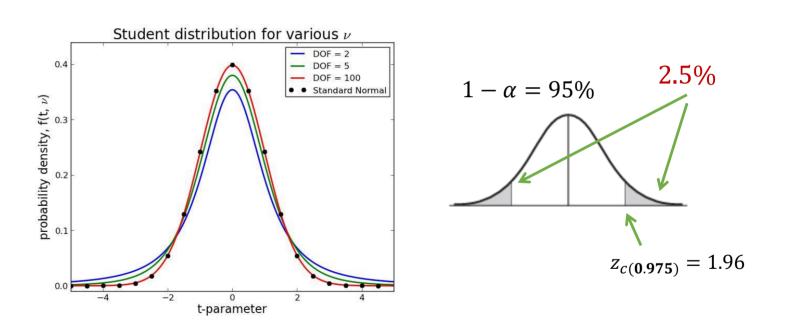


Ex. The 95% critical values (two tailed) for the normal distribution are given by $z_{c(0.975)} = \pm 1.96$. What are the corresponding $t_{c(0.975)}$ for the t distribution with:

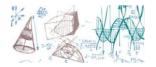
(a) v = 9, (b) v = 20, (c) v = 60

From the t distribution table with integrated probabilities we find:

- a) $t_{c(0.975)}^{v=9} = \pm 2.26$,
- b) $t_{c(0.975)}^{v=20} = \pm 2.09$
- C) $t_{c(0.975)}^{v=60} = \pm 2.0$



Examples – C.I.



- **Ex.** A sample of N = 10 measurements of the diameter of a ball bearing gave a mean $\bar{d} = 10.731 \, cm$ and a standard deviation $s = 0.147 \, cm$. Find (a) 95% and (b) 99% c.i. for the actual diameter.
 - ✓ In this case the confidence interval is given by: $C.I. = \overline{X} \pm t_{0.975} \frac{S}{\sqrt{N-1}}$. And since the sample size N = 10, the number of degrees of freedom is: v = 10 1 = 9:

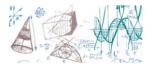
$$C.I._{0.975}^{(d)} = 10.731 \pm 2.26 \frac{0.147}{\sqrt{9}} = 10.731 \pm 0.11 \text{ cm}$$

✓ Now, the 99% confidence interval: $t_{c(0.995)} = 3.25$ for v = 10 - 1 = 9:

$$C.I._{0.995}^{(d)} = 10.731 \pm 3.25 \frac{0.147}{\sqrt{9}} = 10.731 \pm 0.159 \ cm$$

✓ Note the precision of the measurement – we use a very accurate device (but that makes perfect sense – ball bearing may be a critical component of an aircraft engine).

Examples – C.I.



- *Ex.* A sample poll of 100 voters has been chosen at random in a given district. The result indicated that 55% of them were supporting a party A. Find (a) 95% and (b) 99% c.i. for the proportion of all voters supporting this party.
 - a) The c.i. for the population p is defined as: $P \pm z_c \sigma_P = P \pm z_c \sqrt{\frac{p(1-p)}{n}}$. In order to estimate parameter p we use the sample proportion (measurement!)

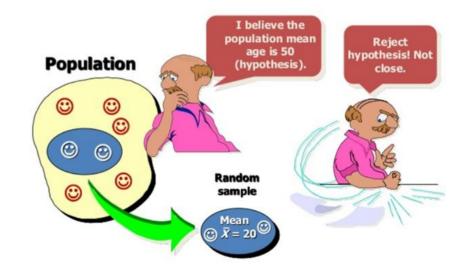
$$P \pm z_{0.975} \sqrt{\frac{p(1-p)}{n}} = 0.55 \pm 1.96 \sqrt{\frac{0.55 \cdot 0.45}{100}} = 0.55 \pm 0.10$$

b) And the 99% c.i.:

$$P \pm z_{0.995} \sqrt{\frac{p(1-p)}{n}} = 0.55 \pm 2.58 \sqrt{\frac{0.55 \cdot 0.45}{100}} = 0.55 \pm 0.13$$

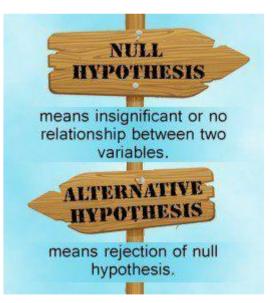
Tests of Hypotheses

- Statistical decisions the bread and butter of statistical reasoning. We need to make a decision about populations using collected samples.
- Using this approach we can check if a new medicine is really helping in curing a disease, if new
 educational system is better than the old etc.
- The first step of such mathematical procedure is preparing assumptions. They may be true or false, depending on the reasoning results, and are called statistical hypotheses.
- Formally, they are statements concerning the probability distributions describing respective populations. For instance, if we are investigating a coin that may be loaded, we can formulate first a hypothesis that the coin is fair: p = 0.5, where p is the probability of getting a head (tail). This we call the **null hypothesis**: H_0 .
- Now, any other hypothesis that is different from the null one is called an alternative hypothesis. We denote it by H₁.

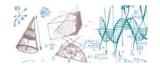


Tests of Hypotheses

- The results of statistical reasoning are not deterministic! Repeating the same experiment we may get different results and draw different conclusions! It is possible – this is probability.
- The best we can do is the following:
 - We formulate a null hypothesis and say that it is true.
 - Next, we make an experiment and obtain a random sample.
 - If the results differ from those expected under H₀ on the basis of pure chance taking into account sampling theory, we would say the observed result differs significantly from expectations.
- Now, we have reason to reject the null hypothesis or not accept it on the basis of the evidence.



Tests of Hypotheses



- Say, we tossed a coin 20 times and we observed 16 heads. This is a clear evidence to reject the H₀ that the coin is fair. However, we may be wrong! It is possible to get 16 heads, but the probability is low.
- Such procedure that enables us to decide whether to accept or reject hypotheses are called tests of hypotheses or decision rules.

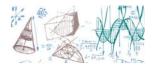
Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

 H_0 : **The null hypothesis:** It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

 H_a : **The alternative hypothesis:** It is a claim about the population that is contradictory to H_0 and what we conclude when we reject H_0 . This is usually what the researcher is trying to prove.

BUT we have a problem now:

- we could have rejected a hypothesis which happens to be true. This kind of error is called Type I.
- we may have accepted a hypothesis which is actually not true, we say we made Type II error.
- In both cases we failed and error in judgement was made so, it is bad...
- Whatever testing procedure we assume, we need to take necessary steps towards minimisation the errors of decision.
- It is not obvious and not trivial decreasing one type of errors is accompanied by an increase in the other type.
- Very often in practice one type of error may be much more serious than the other (e.g. judicial system). The only way to limit both types of errors is to increase the sample size which may not be easy or even possible



- Imagine that we rejected a hypothesis and it happens to be true. This kind of error is called Type I.
- If we accepted a hypothesis which is not true, we say we made **Type II** error.
- In both cases we failed and error in judgement was made so, it is bad...(remember covid tests or cancer markers?)

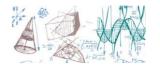
IRUE

PREDICTED

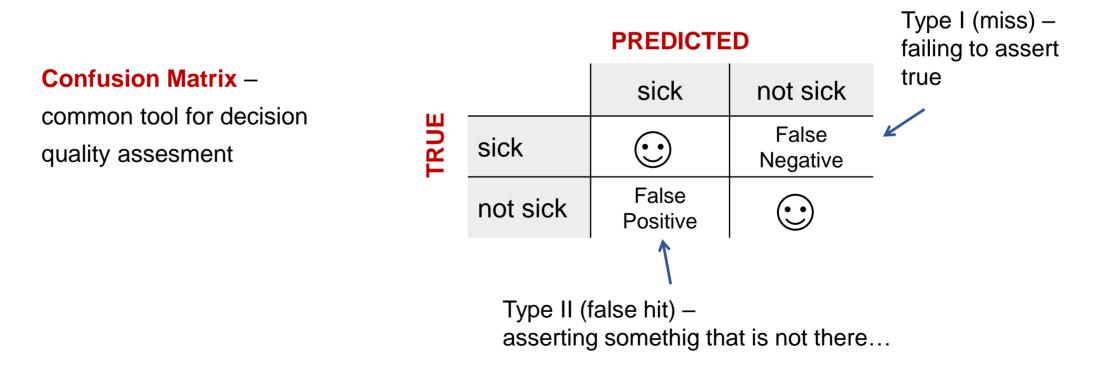
ш		sick	not sick
RUE	sick	10	2
F	not sick	1	8

sicknot sicksickTrue
positiveFalse
Negativenot sickFalse
PositiveTrue
Negative

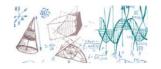
PREDICTED



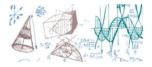
- Imagine that we rejected a hypothesis and it happens to be true. This kind of error is called Type I.
- If we accepted a hypothesis which is not true, we say we made **Type II** error.
- In both cases we failed and error in judgement was made so, it is bad...(remember covid tests or cancer markers?)



Level of significance



- When testing a hypothesis, the maximum probability with which we would be willing to risk any Type I errors is called the level of significance of the test.
- Good practice states that this value should be chosen before any sample is collected we do not wish to bias our results in any way!
- Usually, we choose a level of significance of 0.05 or 0.01, other values can also be used.
- Say, we chose the S.L. to be 0.05, i.e., there is 5% chance to reject the hypothesis that should be accepted.
- Conversely, whenever the null hypothesis is true, we are about 95% confident that we would make the correct decision.
- We also say, that the null hypothesis has been rejected at a 0.05 level of significance, which means that we could make a wrong decision with probability of 0.05



- Imagine that we rejected a hypothesis and it happens to be true. This kind of error is called Type I and the probability is described by *α*.
- If we accepted a hypothesis which is not true, we say we made Type II error and the probability is described by β.
- In both cases we failed and error in judgement was made, so we'd like to have these values low.

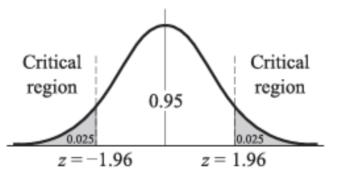
Truth	Decision made				
Iruin	Ho not rejected	Ho rejected			
Ho is true	Correct (1- α)	Type 1 error (α)			
Ho is false	Type II error (β)	Correct $(1-\beta)$			

Tests with normal distribution

• Let's assume that we are considering a statistics S that is approximately normal with the mean and standard deviation μ_S and σ_S . First thing first – standardisation:

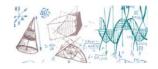
$$Z_S = \frac{S - \mu_S}{\sigma_S}$$

 For the time being, we assume that we reject the hypothesis if our statistics is either too small or too large:



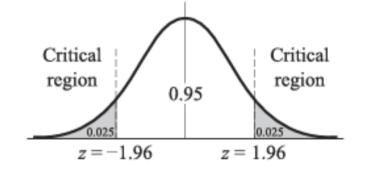
Confidence Level	99.73%	99%	98%	96%	95.45%	95%	90%	80%	68.27%	50%
Z,c	3.00	2.58	2.33	2.05	2.00	1.96	1.645	1.28	1.00	0.6745

Tests with normal distribution



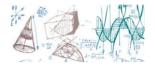
- So, how to reject the test? If for a sample, its z-score corresponding to the value of S is outside the 95% interval, we could conclude that this is unlikely event that would occur with probability of 5%, if our null hypothesis were true
- In other words, we would say, that the z-score for this sample differed significantly from our expectations based on the H₀ and it should be rejected!
 - The grey area represents the level of significance of the test, i.e., the probability of Type I error

Or, we say, that the hypothesis was rejected at 5% level of significance



- All z-scores outside -1.96 and 1.96 are called critical region of the rejection of the null hypothesis (the region of significance)
- Not too hard to notice that all z-scores inside this interval will be called the region of acceptance of the hypothesis or the region of non-significance

The decision rule



- Reject the null hypothesis at α level of significance if the z-score of a statistic **S** falls outside the range $\pm z_S$ (e.g., for $\alpha = 0.05$, $\pm z_S = \pm 1.96$). We also say, that the observed sample statistics is significant at level α
- We accept (or do nothing!) otherwise
 - Note! You could choose an arbitrary value for the level of significance
 - Note! We can also use one-tailed tests (the one discussed above is called two-tailed test). The difference: check if a technological process A is better or worse than B, check if a technological process A is better than B

Level of Significance α	0.10	0.05	0.01	0.005
Critical Values of <i>z</i> for	-1.28	-1.645	-2.33	-2.58
One-Tailed Tests	or 1.28	or 1.645	or 2.33	or 2.58
Critical Values of <i>z</i> for	-1.645	-1.96	-2.58	-2.81
Two-Tailed Tests	and 1.645	and 1.96	and 2.58	and 2.81

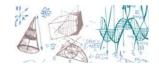
Test statistics



null hyphotesis H_0	$\mu = \mu_0 \ (\sigma \text{ known})$	$\mu = \mu_0$	$\pmb{\sigma}=\pmb{\sigma}_{0}^{2}$
Test statistic T	$\frac{\overline{X} - \boldsymbol{\mu}}{\sigma / \sqrt{n}}$	$\frac{\overline{X} - \boldsymbol{\mu}}{\boldsymbol{S}/\sqrt{n}}$	$\frac{(n-1)S^2}{\sigma_0}$
Distribution of T under <i>H</i> ₀	N(0,1)	t(v = n - 1)	$\chi^2(\nu=n-1)$

Pop. prop.
$$p = p_0$$
 $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$ $n\hat{p} \ge 10, n(1 - \hat{p}) \ge 10$

Tests for means



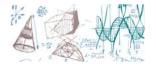
- Ex. 1 Imagine somebody working for a Casino that is tasked with checking that new batch
 of tossing coins is fair. Say, we just draw one coin.
- We could start with deciding on the decision rule, say, we want to perform 100 tosses and obtain a number of heads for which the prob. is "high". Let's pick this to be over 95%. We hypothesising an initial range to be from 40 to 60 heads. Let's check the figures.

$$P(40 \le X_{\mathcal{B}} \le 60) = C_{100}^{40} \left(\frac{1}{2}\right)^{40} \left(\frac{1}{2}\right)^{60} + \dots + C_{100}^{60} \left(\frac{1}{2}\right)^{60} \left(\frac{1}{2}\right)^{40}$$

 This calculations are cumbersome..., however we could use the normal distribution approximation:

$$\mu = np = 100 \cdot \frac{1}{2} = 50, \sigma = \sqrt{npq} = 5, \mu \gg \sigma$$

Tests for means – example cont.



• For categorical numbers we get: $40 \equiv 39.5, 60 \equiv 60.5$, we do that so the results are nice numbers (mind the standardisation transformation):

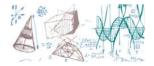
$$z_{39.5} = \frac{39.5 - 50}{5} = -2.1, \qquad z_{60.5} = \frac{60.5 - 50}{5} = 2.1$$

• So, we have our critical points: $z_{39.5} = -2.1$, $z_{60.5} = 2.1$

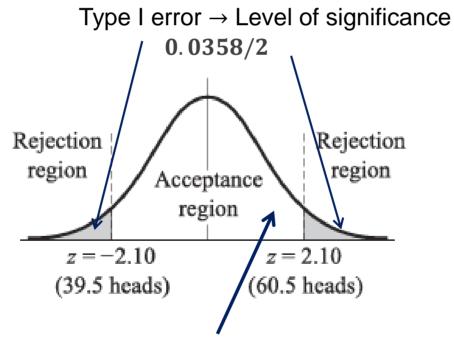
$$P(40 \le X_{\mathcal{B}} \le 60) = P(-2.1 \le X_{\mathcal{N}} \le 2.1) = 0.9642$$

- This looks reasonable, the probability is high enough. We can formulate the decision rule as:
 - ✓ accept the hypothesis (H_0) if the number of heads (or tails) observed in a data sample of 100 tosses is between 40 and 60.
 - ✓ If we observe a different number of heads reject the hypothesis that the coin is fair

Tests for means – example cont.



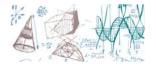
- Note, that the Type I error (rejecting the H₀ when it is correct) can occur with the probability of (1 - 0.9642) = 0.0358
- The decision rule can be showed using a plot:



Accept H_0 if the result is here

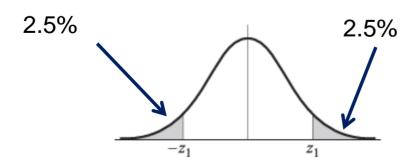
Statistics - Computer Science AGH University of Krakow

Tests for means – example cont.



4

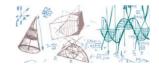
- If the observed result (given a data sample) would land within the shaded area, we say: the z-score differs significantly from the expected value (taking into account pure statistical chances). This is equivalent to accept the alternative hypothesis (however, there is a catch... Very often we chose not to do that, and just reject the H₀)
- Note, that we chosen very unusual significance level α = 3.58 %. As mentioned before it does not matter! This value is up to you!
- Also, consider this: what if the true value of p = 0.7? It would be perfectly possible to observe 60 heads so, we would accept the wrong hypothesis... (Type II error)
 - > Just for training, design a decision rule when the data sample is 64 tosses? Assume that the level of significance $\alpha = 0.05$



$$P(0 \ge X \ge z_{+}) = 0.5 - 0.025$$
$$z_{+} = 1.96, z_{-} = -1.96$$
$$\mu = np = 64 \cdot \frac{1}{2} = 32, \sigma = \sqrt{npq} =$$

Statistics - Computer Science AGH University of Krakow

Tests for means

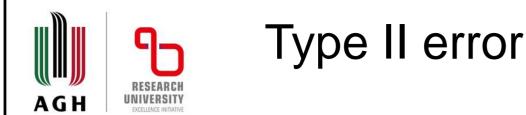


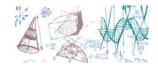
We need to translate the z scores into heads count

$$Z = \frac{X - \mu}{\sigma} \to \pm 1.96 = \frac{X - 32}{4}$$
$$X_{1.96} = 39.84, \equiv 39, \qquad X_{-1.96} = 24.16 \equiv 24$$

we have to accept the hypothesis (H_0) if the number of heads (or tails) observed in a data sample of 64 tosses is between 24 and 39 @ 5% SL.

- Note, that this calculations go exactly the same way as if we want to estimate the *C*.*I*. representing 95% probability!
- Ok, how we should deal with Type II error? Remember?
 - If we accepted a hypothesis which is not true, we say we made Type II error and the probability is described by β.

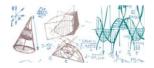




- $X_{1.96} = 39.84, \equiv 39, \qquad X_{-1.96} = 24.16 \equiv 24$
- If we accepted a hypothesis which is not true, we say we made Type II error and the probability is described by β.
- So, how we should deal with Type II error? Well, one way or another we need to see the result and decide if we want to re-word the decision rule (this may be tricky). For instance if we see the number of heads to be 23, it is so close... We could say, we do not reject the zero hypothesis if we find the result between 22 and 42.
- This is not nice and nasty way of doing things, though. We should never ever change the decision rule after seeing data – blinded analysis
- We have additional tools to enforce our decision p-value technique

p-value

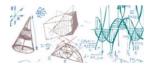
- This technique is very powerful and is of great interest in practical data analyses
- Say, we have a problem where two hypotheses were formulated H₀ and H₁. Say, the zero hypo makes attempt at assertion that a given parameter has some specified value, the alternative hypos can de defined as follow:
- Its value is indeed greater than stated (right-tailed test)
- The parameter is less than stated (left-tailed test)
- It is different (greater than or less than) than stated (two-tailed test)
- We can use the following definition: the p-value (probability value) is the probability of obtaining the value of the test statistic at least as extreme as the one calculated using data sample, assuming that the null hypothesis is correct
- In other words, p-value estimates how well the observed data support the null hypothesis (if it is true). It measures how compatible are your data with the H₀: large values makes your null look good, small suggest rejection



Let's see some action! Say, we have a R.V. following the normal distribution with the standard deviation σ = 3. Now, H₀ states that the mean value μ = 12. Next, we drawn a sample, n=36, and got x̄ = 12.95, we choose "standard" test statistics to be:

$$Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{12.95 - 12}{0.5} = 1.9$$

- The p-value will depend on the alternative hypothesis!!
 - ✓ H₁: µ > 12 in this cast the p-value is defined as the probability that for a random sample of size n = 36 we would observe a sample mean of 12.95 or higher if the true mean were 12: P(Z ≥ 1.9) = 0.029. This represents 3 chances in 100 that x̄ = 12.95 if µ = 12



Let's see some action! Say, we have a R.V. following the normal distribution with the standard deviation σ = 3. Now, H₀ states that the mean value μ = 12. Next, we drawn a sample, n=36, and got x̄ = 12.95, we choose "standard" test statistics to be:

$$Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} = \frac{12.95 - 12}{0.5} = 1.9$$

The p-value will depend on the alternative hypothesis!!

✓ $H_1: \mu > 12$

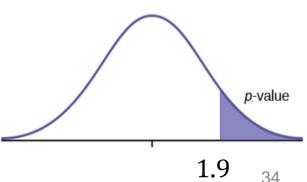
in this cast the p-value is defined as:

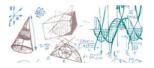
the probability that for a random sample of size n = 36 we would observe a sample mean of 12.95 or more,

if the true mean were 12:

P(Z > 1.9) = 0.03.

This represents 3 chances in 100 that $\overline{X} = 12.95$ if $\mu = 12$





Let's see some action! Say, we have a R.V. following the normal distribution with the standard deviation σ = 3. Now, H₀ states that the mean value μ = 12. Next, we drawn a sample, n=36, and got x̄ = 12.95, we choose "standard" test statistics to be:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = \frac{12.95 - 12}{0.5} = 1.9$$

The p-value will depend on the alternative hypothesis!!

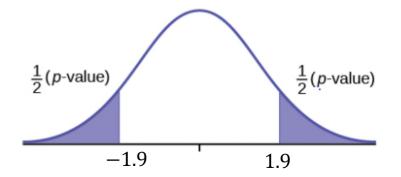
 $\checkmark H_1: \mu \neq 12$

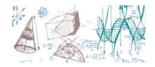
in this cast the p-value is defined as:

• the probability that for a random sample of size n = 36 we would observe a sample mean of 0.95 or more units (standard deviation) away from 12:

 $P(Z \ge 1.9) + P(Z \le -1.9) = 0.057.$

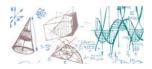
• This represents 6 chances in 100 that $|\bar{x} - 12| \ge 0.95$ if $\mu = 12$





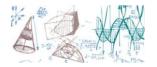
Discussion:

- First of all, the p-value does not provide a tool for rejecting or keeping the null hypothesis on its own! We always need an alternative hypo against which we are going to make a judgement. The same value of test statistics based on the same data sample may lead to completely different conclusions
- In the first case we have small p-value, which suggests we should reject the null in favour of the given alternative
- The second one sports large p-value and suggests strongly not to reject the null in favour of the alternative (less than 12)
- Final example again shows low p-value and suggests that the alternative hypothesis should be considered (note that this one is not so strong as the first one)



- Ex. 3 Imagine, a psychic wants to confirm his abilities for extrasensory perception (ESP). He was asked to guess the colour (yellow and blue) of a card chosen from a deck of 50 cards by somebody else in other room. The test subject does not know how many yellow or blue cards there are in the deck. Say, he identified correctly 32 cards. Is he really the psychic? Assume level of significance to be $\alpha = 0.05$
- Let p be the probability of the individual stating the colour of a card correctly, we formulate the following hypothesis
 - \checkmark *H*₀: *p* = 0.5 he is just randomly guessing
 - ✓ H_1 : p > 0.5 he indeed has ESP abilities
- We choose the one-tail test we are going for high scores!

p-value

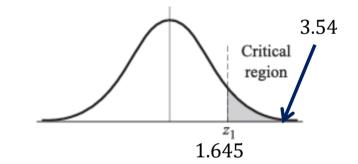


- \checkmark *H*₀: *p* = 0.5 he is just randomly guessing
- \checkmark *H*₁: *p* > 0.5 he indeed has ESP abilities
- We choose the one-tail test we are going for high scores!
- For the null hypo we have:

$$\mu = np = 50 \cdot 0.5 = 25, \sigma = \sqrt{npq} = 3.54$$

For one-tailed test we have:

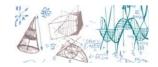
$$P(0 \ge Z \ge z_1) = 0.45, z_1 = 1.645$$



so it is rather unlikely that he identified the cards by guessing only....

but how much unlikely?

p-value



 Approximating the binomial distribution by the normal one, we find that the result of 32 has the following z-score

$$\frac{X-\mu}{\sigma} = \frac{32-25}{3.54} = 1.98$$

- We should conclude, that there is something extraordinary in this result
- Please, repeat the calculations for the significance level $\alpha = 0.01$
- Now, let's calculate the p-value: what is the probability that the 32 cards will be identified correctly using just random guessing?

 $P(Z \ge 1.98) \approx 2\%$

 So, the chances of concluding that the test subject does not have EPS abilities would be like 2 in 100 – this supports rejection of the null hypo.