Introduction to probability, statistics and data handling

Tomasz Szumlak, Agnieszka Obłakowska-Mucha Faculty of Physics and Applied Computer Science

AGH UST Krakow

2
 Statistical Inference

- The statistical inference consists in arriving at (quantitative) conclusions concerning a population where it is impossible or impractical to examine the entire set of observations that make up the population. Instead, we depend on a subset of observations - a sample.

3
 Estimation with confidence

- We discussed a number of approaches to study problem of parameter estimation - we called it the point estimation, since we were interested only in ", a value" of some parameter
\square If there is a special name, it means that there mus \dagger be something more... And it is!
The topic of today's lecture will be the interval estimation or estimation with confidence
\square We also make our first strides into hypothesis testing, for which defining the confidence if crucial

4 A quick one...

\square Consider the following: we performed an experiment and got estimate on a parameter using one of the methods we learned

Not bad... Next we repeat the experiment and got another estimate - what should we expect? What kind of result should be treated as „plausible" and what „unlikely"?
14 is obvious that the ability of obtaining a plausible range of values for any unknown population parameter is a powerful tool

Remember - we are talking about a range defined in the space of model parameters (the model must be itself of course reasonable)

- The min and max limit of this plausible parameter(s) range we call confidence limits and the corresponding range confidence interval

5 Example 1

(1) As usual we start discussing a bunch of experiments and discuss along the topic at hand
A psychology studies were conducted to check correlation of the mental capabilities and proneness to injury among children. Total of 621 children were studied between ages of 4 and 11 . The study period was divided into two intervals 4-7 and 8-11

Say, one child experienced 3 accidents between ages 4 7. We could assume a Poisson model to describe the variability of the data sample. With this single number we could still use the ML technique and obtain: $\widehat{\mu}=3$

- We can than state that the accidents do happen but they are rather rare events
- However, it could be very useful to be able to provide some statement, with confidence 90%, that the mean lies in a range between this and that value (e.g., 1.0-5.0)

6
 Example 2

- Mining disasters (more than 10 victims) registered in a country in Europe were studied between 15 Mar 1851 and 22 Mar 1962
- Total of 191 accidents occurred - that is a lot...
- The first accident after the 15 Mar 1851 occurred 157 days after. Say, we stopped the study after the second accident. We would then obtain a single observation on a R.V. X. For this discussion we assume that it follows the exponential distribution
We have now an estimate on the mean time interval expected between accidents
\square Again - it would be really useful to be able to define an interval of confidence for this average time between disasters

Example 3 (especially for you...)

Lecture absences of 113 student from a course A were noted over a period of two semesters (total of 24 lectures). In this case we could try to use a binomial model for the number of total missed lectures

- Say we divide the tested period into two parts - semester one and semester two. The corresponding number of lectures were 11 and 13
The data showed that one student missed four (hmm... a lot) lectures, so the proportion of missed lectures would be $p=\frac{4}{11}=0.364$
- One could question whether the binomial model is the best one to describe this data. It may so happen that some of the students are committed to the course...

Confidence

\square Statistical statements regarding R.Vs. and probability should always be interpreted in terms of model parameters and confidence

We express the confidence using fractional numbers (\%). So, we could say, for instance, a $\kappa \%$ confidence interval for parameter θ (based on an actual observation) is the interval from θ_{-}to θ_{+}, where $\kappa \% \rightarrow 99 \%, 95 \%, 90 \%, \ldots$

Its meaning is as follow: if we observe an event with the prob. of 95% we say it is reasonable, on the other hand if this is just 5% it should be considered unlikely
\square So, what left now is to evaluate the confidence interval, we reserve for example $\mathbf{5 \%}$ of probability for ,,strange" events and consider both cases too-low-strange and too-high-strange
\square This is, so called, two tailed or two sided confidence interval and we have reserved $\mathbf{2 . 5 \%}$ probability for very high and very low results

9
 Confidence intervals

95\% OF ALL SAMPLES YIELD 95\% CI THAT CONTAINS μ
Sample mean ($\overline{\mathrm{x}}$)

95% confidence interval

Confidence intervals

\square We got the impression that reporting the value of an estimator (e.g. \widehat{X}) tells us nothing about the magnitude of the discrepancy that may exist between the estimator and the estimated parameter $(E[X]=\mu)$.
What would be the "confidence interval" of the estimated PARAMETER?

I WE MAY DEFINE the confidence interval in the following manner:

1. we start with choosing a value $\mathbf{1} \boldsymbol{-} \boldsymbol{\alpha}$ of the confidence level as:

$$
1-\alpha, \quad 0<\alpha<1
$$

1. usually $\alpha=0.01 ; \mathbf{0 . 0 5} ; 0.1$
2. the confidence interval Δ is chosen in such a way that the probability for Δ to cover the unknown parameter (like μ or σ^{2}) is $1-\alpha$

11
 C.I. for the normal distribution

\square We already know a lot about evaluating probabilities using the normal distribution

Confidence Level	Alpha	Alpha/2	z alpha/2
90%	10%	5.0%	1.645
95%	5%	2.5%	1.96
98%	2%	1.0%	2.326
99%	1%	0.5%	2.576

C.I. for the normal distribution

\square Using the plot or the table from the previous slide we write for the critical values $z_{c}= \pm 1.96$, which corresponds to the confidence level of 95\%:

$$
P\left(-1.96 \leq \frac{\bar{X}-\boldsymbol{\mu}}{\sigma / \sqrt{n}} \leq 1.96\right)=0.95
$$

\square As usual, there are some tricks... For instance if we knew the distribution variance σ (remember the normal model has two parameters!) we could immediately solve these inequalities

$$
P\left(\bar{X}-1.96 \frac{\sigma}{\sqrt{n}} \leq \boldsymbol{\mu} \leq \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right)=0.95
$$

- This is a random interval, defined around the sample mean, which contains the unknown population mean with the probability of 95%. So, the 95% C.I. for μ is given by

$$
\text { C.I. }{ }_{.95 \%}^{\mathcal{N}}=\left(\bar{X}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

13

One-sided Cl

1. LOWER one-sided confidence interval: $\alpha_{1}=0 \quad z\left(\alpha_{1}\right)=-\infty$ $z\left(\alpha_{2}\right)=z(1-\alpha)$; the interval is:

$$
\left(\bar{X}-z(1-\alpha) \frac{\sigma}{\sqrt{n}},+\infty\right)
$$

we may be $1-\alpha$ certain that μ is no less than $\bar{X}-\frac{z(1-\alpha) \sigma}{\sqrt{n}}$

14

One-sided Cl

2. UPPER one-sided confidence interval $\alpha_{2}=0 \quad z\left(1-\alpha_{2}\right)=\infty$ the interval is:
we may be $1-\alpha$ certain that μ is not greater than $\bar{X}+\frac{z(1-\alpha) \sigma}{\sqrt{n}}$

15

Interpretation of C.I.

- Observe, we are able to define a C.I. using the formula describing the model and „probability points" that follow from definition of the confidence level
- If we obtain a single measurement then we will get an C.I. spanning $0.27 X$ to $39.5 X$
- The proper interpretation is, that this interval contains the unknown parameter with probability 0.95
- In other words: if we repeat an experiment 100 times, and calculate each time the C.I. (random interval) then we should expect that about 95 times the unknown parameter will be inside these intervals
- The parameter is a number and the confidence statement is made based on properties of the random interval - it may or may not contain the parameter!

C.I. for the normal distribution

- Imagine that we want to test the accuracy of some timer device using a more accurate one (like an digital stop-watch)
- It could go, for instance, like that - we set the tested timer to 5 minutes and we measure the actual time interval
- Assume that the observed data variation is a consequence of the scale precision (you may not be able to set the actual time) and the precision of the time mechanism - $\mathcal{N}\left(\mu, \sigma^{2}\right)$
Say we made n observations and obtained sample mean and sample variance $\bar{x}=294.8, s^{2}=3.12$ respectively
- We know, that if one draws a sample from a normal distribution the sampling distribution of \bar{X} is also normal

$$
\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right) \rightarrow Z=\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right) \sim \mathcal{N}(0,1)
$$

\square And in general we can write:

$$
P\left(-z_{c} \leq \frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \leq z_{c}\right)=1-\alpha
$$

C.I. for the normal distribution

- A general formula that can be applied for the normal distribution for its mean is then

$$
\text { C.I. } I_{100 \cdot(1-\alpha) \%}^{\mathcal{N}}=\left(\bar{X}-z_{c} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{c} \frac{\sigma}{\sqrt{n}}\right)
$$

- Nice, but... what if we do not know the distribution variance (and we usually do not)? The most sensible approach would be to use the sample variance to estimate σ^{2}
$S^{2}=\frac{1}{n-1} \sum_{i}\left(X_{i}-\bar{X}\right)^{2} \rightarrow E\left[S^{2}\right]=\sigma^{2}$
- We define a new R.V.T
$T=\frac{\bar{X}-\mu}{S / \sqrt{n}} \rightarrow P\left(-t \leq \frac{\bar{X}-\mu}{S / \sqrt{n}} \leq t\right)=1-\alpha$
- The R.V. T follows the Student's t-distribution (actually there is a whole family of distribution) $T \sim t(v)$

18

t-distribution

$\square t$-distribution is similar to the normal on (obviously!)

	50%	90%	95%	99%	99.9%
$\mathrm{DF}=5$	0.73	2.02	2.57	4.03	6.87
$\mathrm{DF}=10$	0.70	1.81	2.23	3.17	4.59
$\mathrm{DF}=20$	0.69	1.72	2.09	2.85	3.85
$\mathrm{DF}=30$	0.68	1.70	2.04	2.75	3.65
$\mathrm{DF}=50$	0.68	1.68	2.01	2.68	3.50
(Normal)	0.67	1.64	1.96	2.58	3.29

- The larger the v the more resemblance to the normal curve
\square We use tables to evaluate the critical values t_{c} for a given confidence levels, let's continue on the next slide...

C.I. for t-distribution

- Start with some formalities... If we draw a sample of size n from a normal distribution with the mean μ, the R.V.T

$$
T=\frac{\bar{x}-\mu}{S / \sqrt{n}} \sim t \quad(v=n-1)
$$

- Where \bar{X} is the sample mean and S its standard deviation

$$
\begin{aligned}
& P\left(-t_{c} \leq \frac{\bar{X}-\mu}{S / \sqrt{n}} \leq t_{c}\right)=1-\alpha \\
& P\left(\bar{X}-t_{c} \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X}+t_{c} \frac{S}{\sqrt{n}}\right)=1-\alpha
\end{aligned}
$$

- And the C.I. is centred about the sample mean, which contains the true unknown population parameter μ with probability $1-\alpha$

$$
\text { C.I. } I_{100 \cdot(1-\alpha)}^{t}=\left(\bar{x}-t_{c} \frac{S}{\sqrt{n}}, \bar{x}+t_{c} \frac{S}{\sqrt{n}}\right)
$$

20
 C.I. for t-distribution

- For our timer example, let's pick up the confidence level to be 90% and assume that collected data sample in $n=11$

$$
\begin{aligned}
& \frac{1}{2} \alpha=0.05 \rightarrow t_{c}= \pm 1.81 \\
& C . I{ }_{90 \%}^{t(10)}=\left(\bar{x}-t_{c} \frac{S}{\sqrt{n}}, \bar{x}+t_{c} \frac{S}{\sqrt{n}}\right)= \\
& =\left(294.8-1.81 \frac{1.77}{\sqrt{11}}, 294.8+1.81 \frac{1.77}{\sqrt{11}}\right)= \\
& =(293.8,295.8)
\end{aligned}
$$

W With larger data sample, our C.I. is now nicely narrow (so, we add some predictability actually)

- Also, note that 300 second (this was the setting on the timer) is not included inside the interval
- Is it an indication that the device goes consistently early?

Exponential distribution

- Let's evaluate the C.I. for the mining accidents example
- We assumed that the R.V. T follows the exponential model, we have a single observation of $t=157$ days
- We ask for C.L. $=100(1-\alpha) \%=90 \%, \alpha=\frac{1}{2} \alpha=0.05$

$$
\begin{aligned}
& P(T \leq t)=1-e^{-\frac{t}{\mu}}=0.05 \rightarrow \frac{t}{\mu}=-\ln (0.95) \rightarrow \mu_{+}=3060 \text { (days) } \\
& P(T \geq t)=e^{-\frac{t}{\mu}}=0.05 \rightarrow \frac{t}{\mu}=-\ln (0.05) \rightarrow \mu_{-}=52.4 \text { (days) }
\end{aligned}
$$

- As another summary we should stress, that evaluation of the C.I. requires: data sample, a model (to evaluate probabilities) and the parameter we want to evaluate
- Using these two examples, try to come up with 90% C.I. for the absence case

22

Confidence

In order to find the confidence interval (C.I.) we solve

$$
\begin{aligned}
& P(X \leq 3 ; \mu)=e^{-\mu}\left(1+\mu+\frac{\mu^{2}}{2!}+\frac{\mu^{3}}{3!}\right)=0.025 \rightarrow \mu_{-}=0.62 \\
& P(X \geq 3 ; \mu)=1-e^{-\mu}\left(1+\mu+\frac{\mu^{2}}{2!}+\frac{\mu^{3}}{3!}\right)=0.025 \rightarrow \mu_{+}=8.8
\end{aligned}
$$

- And our statistical statement would be: a 95% confidence interval for the parameter μ of the Poisson model, evaluated using a single observation is $\left(\mu_{-}, \mu_{+}\right)=(0.62,8.8)$
- The obtained confidence interval is very wide - we can make it better by collecting more data!
- The grand summary of what we did: with an observation(s) on the R.V. X, assuming X follows some specified model with an unknown parameter θ, we may evaluate a 95% confidence interval for θ by solving $P(X \leq x)=\frac{1}{2} \alpha$ and $P(X \geq x)=\frac{1}{2} \alpha$. We define the confidence level as C.L. $=(1-\alpha) \%$

Interpretation of C.I.

- Since, we need data to construct a C.I. it follows that for different sample we obtain a different interval - we call it random interval (θ_{-}, θ_{+}are R.Vs. themselves)
- Consider again a single observation of R.V.X that follows an exponential distribution (the math is very easy). The parameter is μ. Now concentrate! We can express the respective limits of the C.I. using the value of that parameter

$$
\begin{aligned}
& x_{0.025} \rightarrow 1-e^{-\frac{x_{0.025}}{\mu}}=0.025 \rightarrow x_{0.025}=-\ln (0.975)=0.025 \mu \\
& x_{0.975} \rightarrow 1-e^{-\frac{x_{0.975}}{\mu}}=0.975 \rightarrow x_{0.975}=-\ln (0.05)=3.69 \mu
\end{aligned}
$$

- Thus, we have $P(0.025 \mu \leq X \leq 3.69 \mu)=0.95$. We can also rewrite this in terms of the unknown parameter

$$
P\left(\frac{X}{3.69} \leq \mu \leq \frac{X}{0.025}\right)=P(0.27 X \leq \mu \leq 39.5 X)=0.95
$$

24 C.I. for the variance

- Imagine that a company is delivering composite fibres for aircraft wings. In that case a great care should be taken to produce fibres that do not vary too much in tensile strength (expressed in kg)
- A sample of 10 fibres were taken and tested, the results were as follow $\bar{x}=150.72 \mathrm{~kg}$ and $\mathrm{s}^{2}=37.75 \mathrm{~kg}^{2}$. Our mission is to find a confidence interval for the variance
We assume that the parent distribution of the fibre strength is normal, thus the sampling distribution of variance should follow the $\chi^{2}(v=n-1)$ distribution

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi^{2}(v=n-1)
$$

- The χ^{2} is a family of curves and for increasing number of degrees of freedom it is getting more and more symmetric

25 C.I. for the variance

- Again, the game is to find critical points using a given model (in this case the chi-squared)

$$
\begin{aligned}
& P\left(\chi_{c-}^{2} \leq \frac{(n-1) S^{2}}{\sigma^{2}} \leq \chi_{c+}^{2}\right)=1-\alpha \rightarrow \chi_{c-}^{2}=q_{\frac{1}{2} \alpha^{\prime}} \chi_{c+}^{2}=q_{1-\frac{1}{2} \alpha} \\
& P\left(\frac{(n-1) S^{2}}{\chi_{c+}^{2}} \leq \sigma^{2} \leq \frac{(n-1) S^{2}}{\chi_{c-}^{2}}\right)=1-\alpha \\
& \text { C.I }{ }_{100 \cdot(1-\alpha) \%}^{\chi^{2}(v)}=\left(\frac{(n-1) S^{2}}{\chi_{c+}^{2}}, \frac{(n-1) S^{2}}{\chi_{c-}^{2}}\right)
\end{aligned}
$$

26
 C.I. for the variance

- Getting back to the fibre strength example, we are searching for C.I $I_{90 \%}^{\chi^{2}(9)}$, the critical points (from tables) $\chi_{5 \%}^{2}=3.325$ and $\chi_{95 \%}^{2}=16.919$ for $\chi^{2}(v=9)$ distribution
- Our probability statement then is

$$
\begin{aligned}
& P\left(3.325 \leq \frac{9 s^{2}}{\sigma^{2}} \leq 16.919\right)=0.9 \\
& \text { C.I. } \chi_{.00 \%}^{\chi^{2}(9)}=\left(\frac{(n-1) S^{2}}{\chi_{c+}^{2}}, \frac{(n-1) S^{2}}{\chi_{c-}^{2}}\right)=\left(\frac{9 s^{2}}{16.919}, \frac{9 s^{2}}{3.325}\right) \\
& =\left(0.53 s^{2}, 2.71 s^{2}\right)=\ldots
\end{aligned}
$$

] For the timer example, this would give us

$$
\text { C.I. }{ }_{90 \%}^{\chi^{2}(10)}=\left(\frac{10 \cdot 3.12}{18.307}, \frac{10 \cdot 3.12}{3.247}\right)=(1.70,9.38)
$$

Try to work out the C.I. for the normal standard deviation

