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2 Statistical Inference

▪ The statistical inference consists in arriving at (quantitative) 

conclusions concerning a population where it is impossible 

or impractical to examine the entire set of observations that 

make up the population. Instead, we depend on a subset of 

observations - a sample.
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3 Statistical Sample and Population

▪ Sample posses a property 𝑋 (our RV); 𝑋 → 𝑓(𝑥, 𝝀)
(probability density function), 𝝀 – set of parameters of 

the population to be determined from the sample (e.g. 

𝜇, 𝜎, etc.).

▪ Any function of the random variables constituting a 

random sample that is used for estimation of unknown 

distribution parameters 𝝀 is called a statistic 𝑺:

𝑆 = 𝑆 𝑋1, 𝑋2, … , 𝑋𝑛

𝜆𝑖 = 𝐸 𝑆 𝑋1, 𝑋2, … , 𝑋𝑛 ≡ መ𝑆

We say: the estimated value of a statistic መ𝑆 is said to be 

estimator of the parameter 𝜆 ; the estimation is carried out 

on the basis of an n-element sample.

do we  know any statistic?



Parameter estimation4



5 Statistical Sample and Population

• We start with two estimators:

− estimator of a mean value

− estimator of a variance

• Later we will develop methods for the estimation of unknown 

parameter of a model (linear, or any other) based on samples 

(method of momets, method of least squares, maximum 

likelihood estimation)

we want to estimate 𝜇
and 𝜎2 of a population

with a use of sample



6 Point estimation

❑ Let’s think about the following: we are looking at 

some phenomena (took a data sample), now what 

we like to do is to try describe the data using a model 

(have we already discussed any models?)

❑ Using the statistics lingo we would say: we want to 

estimate the parameters for the hypothesised 

population model

❑ As usual there are a lot of methods, we are going to 

have a look at a few of them

❑ Estimators should have specific features (we will 

discuss it today)

BUT

❑ Let’s start with some examples first!



Number of males in a queue

❑ An experiment has been conducted in London Tube to check 

the number of males in each of 100 queues all of length 10. 

The results obtained were as follows

❑ And the plot
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Counts 0 1 2 3 4 5 6 7 8 9 10

Frequency 1 3 4 23 25 19 18 5 1 1 0



Number of males in a queue

❑ Can you tell what is the underlaying parent distribution?

❑ Well, one could prove that the binominal one fits quite good 

ℬ 𝑛, 𝑝 , 𝑛 = 10 being the length of the queue and 𝒑 the 

proportion of males (check this on your own)

❑ We could estimate the 𝑝 using the collected sample

❑ What would be the weak point of this assumption?

❑ Can we actually come up with a generic strategy to say, the 

value of a parameter of interest is this and that?

❑ Yes! We can! We need to perform an experiment and run an 

analysis 

❑ Another question would be how reliable this estimate is (but 

we leave it for the next lectures)
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#𝑚𝑎𝑙𝑒𝑠

#𝑎𝑙𝑙 𝑝𝑎𝑠𝑠𝑎𝑛𝑔𝑒𝑟𝑠
=
1 ∙ 0 + 3 ∙ 1 + ⋯+ 1 ∙ 9 + 0 ∙ 10

1000
=

435

1000
= 𝟎. 𝟒𝟑𝟓



❑ Consider the following: to check the water for contamination 

by a micro-organism a number of samples were taken, the 

results are summarised as follow

❑ One can assume that the data follow the Poisson distribution 

with an unknown parameter 𝜇 (each water sample is an 

independent observation on the same random variable!)

❑ For these particular data, we can estimate the 𝜇 as:

9 Estimators

Counts 0 1 2 3 4 5 6 7 8 >9

Frequency 53 25 13 2 2 1 1 0 1 0

ҧ𝑥 =
0 ∙ 53 + 1 ∙ 25 + ⋯+ 8 ∙ 1

58 + 25 +⋯+ 1
=

84

103
= 0.816

𝑋1, 𝑋2, … , 𝑋103 → 𝑋 ≡ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇)

ത𝑋(1) =
𝑋1 + 𝑋2 +⋯+ 𝑋103

103
→ ത𝑋 =

𝑋1 + 𝑋2 +⋯+ 𝑋𝑛
𝑛



❑ Let’s set a generic procedure using this simple example

❑ First, we pick the parameter to be estimated

❑ Next, we need to collect data and compute a sampling statistics

using a formula corresponding to the parameter we are interested in

❑ In our example that is a sample mean

❑ This, in turn, we call an estimator of true parameter, in our case this 

would be: 𝜇 → ത𝑋 = Ƹ𝜇 (we use the caret symbor "^")

❑ Remember – the estimator is a random variable, for different sample 

we are going to get different value

❑ The estimator will follow its own distribution – sampling distribution of 

the estimator

10 Estimators

ത𝑋 =
𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

𝑛



A big question

❑ So, we collected the data – we are going to be interested in a 

procedure, which basing on the observed variation gives the 

best value (we could also ask about the range of values) for 

the corresponding underlaying model parameter(s)

❑ Again, using the stat lingo we want to get the best possible 

estimate of the value of the parameter(s)

❑ That is what the point estimation is all about

❑ BTW, it may also be useful to estimate the range of „good” 

parameter values – that is yet another story called estimation 

with confidence – we are going to look at this next time!
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Properties of estimators12
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14 Estimators

ത𝑋 =
𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

𝑛



18 Estmator Wish List
❑ We are looking for the best estimator (but what does „best” 

mean? 

❑ In the best of all possible worlds, we could find an estimator Ƹ𝜇
for which Ƹ𝜇 = 𝜇 in all samples. But this does not exist, 

sometimes Ƹ𝜇 will be too small, fort other samples too big.

❑ Let’s write (in general): መ𝜃 = 𝜃 + 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑒𝑠𝑡𝑚𝑎𝑡𝑖𝑜𝑛. Therefore 

the best estimator መ𝜃:

• has small estimator errors: the mean squared error RMS 𝐸 ෠𝜃 − 𝜃
2

shoud be the smallest

• should be unbiased 𝐸 ( ෠𝜃) = 𝜃

• should have small variance 𝑉𝐴𝑅 ( ෠𝜃)

We are looking for unbiased (expectation value) and efficient

estimators (variance).



Sampling distribution
❑ Any sample statistics is a function of R.Vs and is therefore itself a 

random variable – that is absolutely critical to remember!

❑ The probability distribution of a sample statistics is called the sampling 

distribution of this statistics (sorry for complicated circular 
sentences…)

❑ A recipe to get such distribution would be as follow: we should 

draw all possible samples of size n from a population, next we 

should compute the statistics at hand, thus, obtaining the 

distribution of this statistics. We call it the sampling distribution

❑ It is perfectly ok to compute the mean, variance, standard deviation 

and other moments for the sampling distribution!

❑ To make it a bit more comprehensible, let’s consider the sample 

mean. Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 be independent, identically distributed RVs. The 

mean of the sample is another R.V. defined as follow:
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ഥ𝑿 =
𝟏

𝒏
𝑿𝟏 + 𝑿𝟐 +⋯+𝑿𝒏 =

σ𝒊/𝟏
𝒊/𝒏

𝑿𝒊

𝒏



Estimator for the mean20



❑ Theorem 1. The mean of the sample means is a consistent

etimator of 𝜇:

where 𝜇 is the mean of the population. So, we say, that 

the expected value of the sample mean is the population 

mean – how interesting!

❑ Theorem 2. If a population is infinite and the sampling is 

random, or if a population is finite and sampling is with 

replacement, then the variance of the distributions of the 

sample means, denoted by 𝜎 ത𝑋, is:

21 Sampling dist. of means

𝐸 ത𝑋 = 𝜇 ത𝑋 = 𝜇

𝐸 ത𝑋 − 𝜇 2 = 𝜎ത𝑋
2 =

1

𝑛
𝜎2



❑ Theorem 3. If the population is not infinite (of size N) or is the 

sampling is done without replacement, then the variance 

should be evaluated using:

❑ Theorem 4. If the population from which we draw samples is 

normally distributed with mean 𝜇 and variance 𝜎2, then the 

sample mean is also normally distributed with mean 𝝁 and 

variance 
𝝈𝟐

𝒏

❑ Theorem 5. Let’s assume that the population from which 

samples are drawn has mean 𝜇 and variance 𝜎2. The 

population may or may not be normally distributed. The 

standardised variable associated with ത𝑋 can be written as:

22

Sampling dist. of means

𝜎′ ത𝑋
2 =

1

𝑛
𝜎2

𝑁 − 𝑛

𝑁 − 1
, 𝑁 → ∞:𝜎′ ത𝑋

2 → 𝜎ത𝑋
2

𝑍 =
ത𝑋 − 𝜇

𝜎/ 𝑛



Estimator for sample variance

❑ If 𝑋1, 𝑋2, ⋯𝑋𝑛 denote R.Vs for a random sample of size n, the 
R.V. giving the variance of the sample (the sample variance) is 
defined as:

❑ We already know, that 𝐸 ത𝑋 = 𝜇, is this the same for 𝐸 𝑆2 = 𝜎2?

❑ A little digression – whenever the expected value of a 
statistics is equal to the corresponding population 
parameter, we call this statistics an unbiased estimator. Its 
value is then an unbiased estimate of the respective 
parameter

❑ Unfortunately, it can be proved that for the sample variance, 
we have:

❑ However, an unbiased variance estimator is easy to find:
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𝑆2 =
𝟏

𝒏
𝑋1 − ത𝑋 2 + 𝑋2 − ത𝑋 2 +⋯+ 𝑋𝑛 − ത𝑋 2

𝐸 𝑆2 = 𝜇𝑆2 =
𝑛 − 1

𝑛
𝜎2

መ𝑆2 =
𝑛

𝑛 − 1
𝑆2 =

𝟏

𝒏 − 𝟏
𝑋1 − ത𝑋 2 + 𝑋2 − ത𝑋 2 +⋯+ 𝑋𝑛 − ത𝑋 2



Estimator for the variance24



25 Point estimators - summary

❑ Sample mean ത𝑋 is the point estimator of parameter 𝜇:

❑ The unbiased estimator for variance is:

❑ The estimator of the correlation (𝑋, 𝑌) is:

ത𝑋 =
𝑋1 + 𝑋2 +⋯+ 𝑋𝑛

𝑛
=
1

𝑛
෍

𝑖=1..𝑛

𝑋𝑖

መ𝑆2 =
1

𝑛 − 1
𝑋1 − ത𝑋 2 + 𝑋2 − ത𝑋 2 +⋯+ 𝑋𝑛 − ത𝑋 2 =

1

𝑛 − 1
෍ 𝑋𝑖 − ത𝑋 2

𝑟(𝑋, 𝑌) =
𝑆𝑋𝑌

𝑆𝑋𝑋 𝑆𝑦𝑦

𝑆𝑋𝑋 =෍ 𝑋𝑖 − ത𝑋 2

𝑆𝑌𝑌 =෍ 𝑌𝑖 − ത𝑌 2
𝑆𝑋𝑌 =෍(𝑋𝑖 − ത𝑋)(𝑌𝑖 − ത𝑌)



Sampling dist. of variances

❑ In order to create the sampling distribution of variances, 

we take all the possible samples of size n, that can be 

drawn from a population and calculate their variances

❑ One change is, that instead of looking directly at the 

distribution of the sample variance, we look at the R.V.:

❑ Theorem 6. If a random samples of size n are taken from 

a population having a normal distribution, than the 

sampling variable 
𝑛𝑆2

𝜎2
has a 𝜒2 distribution with 𝑛 − 1

degrees of freedom

26

𝑛𝑆2

𝜎2
=

𝑛 − 1 መ𝑆2

𝜎2
=

𝑋1 − ത𝑋 2 + 𝑋2 − ത𝑋 2 +⋯+ 𝑋𝑛 − ത𝑋 2

𝜎2



𝜒2distribution

❑ This is another very popular distribution in Statistics!

❑ The mathematical formula describing it is quite complex, 

again we are going to use tabulated values when solving 

problems!
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