

Introduction to probability, statistics and data handling

Tomasz Szumlak, <u>Agnieszka Obłąkowska-Mucha</u> Faculty of Physics and Applied Computer Science

AGH UST Krakow

Statistical Inference

2

The statistical inference consists in arriving at (quantitative) conclusions concerning a population where it is impossible or impractical to examine the entire set of observations that make up the population. Instead, we depend on a subset of observations - a sample.

Statistical Sample and Population

3

- Sample posses a property X (our RV); $X \to f(x, \lambda)$ (probability density function), λ – set of parameters of the population to be determined from the sample (e.g. μ, σ , etc.).
- Any function of the random variables constituting a random sample that is used for estimation of unknown distribution parameters λ is called a statistic S:

 $S = S(X_1, X_2, \dots, X_n)$ $\lambda_i = E[S(X_1, X_2, \dots, X_n)] \equiv \hat{S}$

We say: the estimated value of a statistic \hat{S} is said to be estimator of the parameter λ ; the estimation is carried out on the basis of an n-element **sample**.

do we know any statistic?

Parameter estimation

4

The parameters of a pdf are any constants that characterize it,

$$f(x;\theta) = \frac{1}{\theta} e^{-x/\theta}$$

i.e., θ indexes a set of hypotheses.

Suppose we have a sample of observed values: $x = (x_1, ..., x_n)$

parameter

We want to find some function of the data to estimate the parameter(s):

 $\widehat{ heta}(ec{x})$

r.v.

← estimator written with a hat

Sometimes we say 'estimator' for the function of $x_1, ..., x_n$; 'estimate' for the value of the estimator with a particular data set.

Statistical Sample and Population

- We start with two estimators:
 - estimator of a **mean value**
 - estimator of a **variance**

we want to estimate μ and σ^2 of a **population** with a use of **sample**

Later we will develop methods for the estimation of unknown parameter of a model (linear, or any other) based on samples (method of momets, method of least squares, maximum likelihood estimation)

6

Point estimation

- Let's think about the following: we are looking at some phenomena (took a data sample), now what we like to do is to try describe the data using a model (have we already discussed any models?)
- Using the statistics lingo we would say: we want to estimate the parameters for the hypothesised population model
- As usual there are a lot of methods, we are going to have a look at a few of them
- Estimators should have specific features (we will discuss it today)

BUT

□ Let's start with some **examples** first!

Number of males in a queue

An experiment has been conducted in London Tube to check the number of males in each of 100 queues all of length 10. The results obtained were as follows

Counts	0	1	2	3	4	5	6	7	8	9	10
Frequency	1	3	4	23	25	19	18	5	1	1	0

And the plot

Number of males in a queue

Can you tell what is the <u>underlaying **parent distribution**</u>?

8

Well, one could prove that the **binominal** one fits quite good $\mathcal{B}(n,p)$, n = 10 being the length of the queue and p the proportion of males (check this on your own)

 \square We could estimate the p using the collected sample

#males	$\underline{1\cdot 0+3\cdot 1+\cdots +1\cdot 9+0\cdot 10}$	435 - 0	435
#all passangers	1000	$-\frac{1}{1000} - 0$	433

What would be the weak point of this assumption?

- Can we actually come up with a generic strategy to say, the value of a parameter of interest is this and that?
- Yes! We can! We need to perform an experiment and run an analysis
- Another question would be how reliable this estimate is (but we leave it for the next lectures)

Estimators

9

Consider the following: to check the water for contamination by a micro-organism a number of samples were taken, the results are summarised as follow

Counts	0	1	2	3	4	5	6	7	8	>9
Frequency	53	25	13	2	2	1	1	0	1	0

One can assume that the data follow the Poisson distribution with an unknown parameter μ (each water sample is an independent observation on the same random variable!) For these particular data, we can estimate the μ as:

$$\bar{x} = \frac{0 \cdot 53 + 1 \cdot 25 + \dots + 8 \cdot 1}{58 + 25 + \dots + 1} = \frac{84}{103} = 0.816$$
$$\{X_1, X_2, \dots, X_{103}\} \to X \equiv Poisson(\mu)$$
$$\bar{X}_{(1)} = \frac{X_1 + X_2 + \dots + X_{103}}{103} \to \bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

10 Estimators

Let's set a generic procedure using this simple example

- First, we pick the parameter to be estimated
- Next, we need to **collect data** and **compute a sampling statistics** using a formula corresponding to the parameter we are interested in

/In our example that is a **sample mean**

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

This, in turn, we call an **estimator** of true parameter, in our case this would be: $\mu \rightarrow \overline{X} = \hat{\mu}$ (we use the caret symbor "^")

Remember – the estimator is a random variable, for different sample we are going to get different value

The estimator will follow its own distribution – **sampling distribution of the estimator**

A big question

11

- So, we collected the data we are going to be interested in a procedure, which basing on the observed variation gives the best value (we could also ask about the range of values) for the corresponding underlaying model parameter(s)
 - Again, using the stat lingo we want to get the best possible estimate of the value of the parameter(s)
 - 1/That is what the **point estimation** is all about
 - BTW, it may also be useful to estimate the range of "good" parameter values – that is yet another story called **estimation with confidence** – we are going to look at this next time!

Estimation

The fine art of guessing

Not quite like that...

Properties of estimators

If we were to repeat the entire measurement, the estimates from each would follow a pdf:

Estimators

Consider the following: to check the water for contamination by a micro-organism a number of samples were taken, the results are summarised as follow

Counts	0	1	2	3	4	5	6	7	8	>9
Frequency	53	25	13	2	2	1	1	0	1	0

One can assume that the data follow the **Poisson distribution** with an unknown parameter μ (each water sample is an independent observation on the same random variable!) For these particular data, we can estimate the μ as:

$$\bar{x} = \frac{0 \cdot 53 + 1 \cdot 25 + \dots + 8 \cdot 1}{58 + 25 + \dots + 1} = \frac{84}{103} = 0.816$$
$$\{X_1, X_2, \dots, X_{103}\} \to X \equiv Poisson(\mu)$$
$$\bar{X}_{(1)} = \frac{X_1 + X_2 + \dots + X_{103}}{103} \to \bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

14 Estimators

Let's set a **generic procedure** using this simple example

- First, we pick the parameter to be estimated
- Next, we need to **collect data** and **compute a sampling statistics** using a formula corresponding to the parameter we are interested in

/In our example that is a **sample mean**

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

This, in turn, we call an **estimator** of true parameter, in our case this would be: $\mu \rightarrow \overline{X} = \hat{\mu}$ (we use the caret symbor "^")

Remember – the estimator is a random variable, for different sample we are going to get different value

The estimator will follow its own distribution – **sampling distribution of the estimator**

Estmator Wish List

- We are looking for the best estimator (but what does "best" mean?
- In the best of all possible worlds, we could find an estimator $\hat{\mu}$ for which $\hat{\mu} = \mu$ in all samples. But this does not exist, sometimes $\hat{\mu}$ will be too small, fort other samples too big.
- Let's write (in general): $\hat{\theta} = \theta + error \ of \ estimation$. Therefore the best estimator $\hat{\theta}$:
 - has small estimator errors: the mean squared error RMS $E\left[\left(\hat{\theta} \theta\right)^2\right]$ shoud be the smallest
 - should be **unbiased** $E[(\hat{\theta})] = \theta$
 - should have small variance $VAR[(\hat{\theta})]$

We are looking for **unbiased** (expectation value) and **efficient** estimators (variance).

Sampling distribution

19

- Any sample statistics is a function of R.Vs and is therefore itself a random variable that is absolutely critical to remember!
 - The probability distribution of a sample statistics is called **the sampling distribution** of this statistics (sorry for complicated circular sentences...)
 - A recipe to get such distribution would be as follow: we should draw all possible samples of size n from a population, next we should compute the statistics at hand, thus, obtaining the distribution of this statistics. We call it the sampling distribution
 - It is perfectly ok to compute the mean, variance, standard deviation and other moments for the sampling distribution!
 - To make it a bit more comprehensible, let's consider the sample mean. Let X_1, X_2, \dots, X_n be independent, identically distributed RVs. The mean of the sample is another R.V. defined as follow:

$$\overline{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n) = \frac{\sum_{i/1}^{i/n} X_i}{n}$$

20

Estimator for the mean

Parameter:
$$\mu = E[x] = \langle x \rangle = \int_{-\infty}^{\infty} x f(x) dx$$

Estimator:
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \equiv \overline{x}$$
 ('sample mean')

We find: $b = E[\hat{\mu}] - \mu = 0$

$$V[\hat{\mu}] = \frac{\sigma^2}{n} \qquad \left(\sigma_{\hat{\mu}} = \frac{\sigma}{\sqrt{n}}\right)$$

Sampling dist. of means

Theorem 1. The mean of the sample means is a consistent etimator of μ :

 $E[\bar{X}] = \mu_{\bar{X}} = \mu$

where μ is the mean of the population. So, we say, that the expected value of the sample mean is the population mean – **how interesting**!

Theorem 2. If a population is infinite and the sampling is random, or if a population is finite and sampling is with replacement, then the variance of the distributions of the sample means, denoted by $\sigma_{\bar{X}}$, is:

$$E[(\bar{X} - \mu)^2] = \sigma_{\bar{X}}^2 = \frac{1}{n}\sigma^2$$

Sampling dist. of means

Theorem 3. If the population is not infinite (of size N) or is the sampling is done without replacement, then the variance should be evaluated using:

$$\sigma'_{\bar{X}}^2 = \frac{1}{n} \sigma^2 \left(\frac{N-n}{N-1} \right), N \to \infty: \sigma'_{\bar{X}}^2 \to \sigma_{\bar{X}}^2$$

Theorem 4. If the population from which we draw samples is normally distributed with mean μ and variance σ^2 , then the sample mean is also normally distributed with mean μ and variance $\frac{\sigma^2}{n}$

Theorem 5. Let's assume that the population from which samples are drawn has mean μ and variance σ^2 . The population **may or may not be normally distributed**. The standardised variable associated with \bar{X} can be written as:

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

Estimator for sample variance

/If $\{X_1, X_2, \dots, X_n\}$ denote R.Vs for a random sample of size n, the R.V. giving the variance of the sample (the sample variance) is defined as:

$$S^{2} = \frac{1}{n} \left[(X_{1} - \bar{X})^{2} + (X_{2} - \bar{X})^{2} + \dots + (X_{n} - \bar{X})^{2} \right]$$

We already know, that $E[\bar{X}] = \mu$, is this the same for $E[S^2] = \sigma^2$?

- A little digression whenever the expected value of a statistics is equal to the corresponding population parameter, we call this statistics an unbiased estimator. Its value is then an unbiased estimate of the respective parameter
- Unfortunately, it can be proved that for the sample variance, we have: n-1

$$E[S^2] = \mu_{S^2} = \frac{n-1}{n}\sigma^2$$

However, an unbiased variance estimator is easy to find:

$$\hat{S}^2 = \frac{n}{n-1}S^2 = \frac{1}{n-1}[(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + \dots + (X_n - \bar{X})^2]$$

24

Estimator for the variance

Parameter:
$$\sigma^2 = V[x] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

Estimator: $\widehat{\sigma^2} = \frac{1}{(n-1)} \sum_{i=1}^{n} (x_i - \overline{x})^2 \equiv s^2$ ('sample variance')

We find:

 $b = E[\widehat{\sigma^2}] - \sigma^2 = 0$ (factor of *n*-1 makes this so)

25

Point estimators - summary

Sample mean \overline{X} is the point estimator of parameter μ :

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1..n} X_i$$

The unbiased estimator for variance is:

$$\hat{S}^2 = \frac{1}{n-1} \left[(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + \dots + (X_n - \bar{X})^2 \right] = \frac{1}{n-1} \sum_{i=1}^{n-1} (X_i - \bar{X})^2$$

The estimator of the correlation (X, Y) is:

$$r(X,Y) = \frac{S_{XY}}{\sqrt{S_{XX}}\sqrt{S_{yy}}}$$

$$S_{XX} = \sum (X_i - \bar{X})^2$$
$$S_{YY} = \sum (Y_i - \bar{Y})^2$$

$$S_{XY} = \sum (X_i - \bar{X})(Y_i - \bar{Y})$$

Sampling dist. of variances

In order to create the sampling distribution of variances, we take all the possible samples of size n, that can be drawn from a population and calculate their variances One change is, that instead of looking directly at the

distribution of the sample variance, we look at the R.V.:

$$\frac{nS^2}{\sigma^2} = \frac{(n-1)\hat{S}^2}{\sigma^2} = \frac{(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + \dots + (X_n - \bar{X})^2}{\sigma^2}$$

Theorem 6. If a random samples of size n are taken from a population having a normal distribution, than the sampling variable $\frac{nS^2}{\sigma^2}$ has a χ^2 distribution with n-1degrees of freedom

χ^2 distribution

This is another very popular distribution in Statistics!

The mathematical formula describing it is quite complex, again we are going to use tabulated values when solving problems!