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The Binomial Distribution
❑ We already know this distribution – it emerges when we 

consider an experiment such as tossing a coin, rolling a die or 

choosing a marble from a box repeatedly.

❑ So, we considering trials. Each outcome will have constant 

probability assigned (that should not change in time, and is

the parameter of the Bernoulli prob. model family). 

❑ Sometimes we are also interested in processes where the 

probability is not constant (out of the scope of our lecture, 

however)

❑ We then say that p is a success and q is a failure (in a Bernoulli 

sense) and can compose the following P.D.F.

❑ The RV denote the number of successes 𝑥 in n trials, 𝑥 =
0, 1, … , 𝑛
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𝒇 𝒙 = 𝑩(𝒏, 𝒑) = 𝒑 𝑿 = 𝒙 =
𝒏
𝒙

𝒑𝒙𝒒𝒏−𝒙 =
𝒏!

𝒙! 𝒏 − 𝒙 !
𝒑𝒙𝒒𝒏−𝒙



The Binomial Distribution
❑ The mean and variance can be fairly easy calculated:

❑ In the limit of „large” n and „no too small” p we can very 

accurately approximate the Binomial distribution with 

Gaussian one
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𝜇 =෍
𝑥
𝑥𝑃 𝑥 = 𝑛𝑝

𝜎2 =෍
𝑥
𝑥 − 𝜇 2𝑃 𝑥 = 𝑛𝑝(1 − 𝑝)



The Binomial Distribution
❑ Properties of the Binomial P.D.F.

❑ We can mote something interesting here

❑ Theorem 6. Let X be the RV giving the number of successes in n 

Bernouli trials, so that 
𝑋

𝑛
is the proportion of successes. Then if p 

is the probability of success and 𝜖 is any positive number:
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lim
𝑛→∞

𝑝𝑟𝑜𝑏
𝑋

𝑛
− 𝑝 ≥ 𝜖 = 0



Poisson distribution
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❑ The RV of discrete type:

- the number of outcomes occurring, for instance, during 

a given time (e.g. number of radioactive decays in a

sample of radioactive material) t: 𝑋 = 𝑋𝑡 = 0, 1, 2, . . .

❑ number of events in a given region of space - e.g. 

number of typing errors per page

or: 

• telephone calls arriving during a (short) period of time;

• light quanta (photons) arriving at detecting system;

• number of mutations on a strand of DNA (per unit length);

• number of customers arriving at a counter;

• number of cars arriving at a trac light;

• number of Losses/Claims;

❑ POISSON



Poisson distribution
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❑ Numbers of outcomes occurring in one time interval t are independent 

of each other, i.e. the number occurring in one time interval is

independent of the number that occurs in any other disjoint time 

interval (Poisson process has no memory)

❑ The probability that a single outcome will occur during a very short time 

interval 𝑡 is PROPORTIONAL to the length of interval:

❑ Let me to introduce the Poisson distribution:

𝑃(𝑋Δ𝑡 = 1)~Δ𝑡

𝑃 𝑋𝑡 = 𝑘, 𝜆 =
𝜆𝑘

𝑘!
𝑒−𝜆



7 Poisson distribution

❑ The number of decays of radioactive material in a fixed time 
period follows the Poisson distribution (given that the decay 
probability is constant over the time period)

𝜆=2

𝜆=5

𝜆=10

𝑓
(𝑛
;𝜆

)
𝑓
(𝑛
;𝜆
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𝑓
(𝑛
;𝜆
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8 Poisson distribution
❑ Let’s take the binomial distribution, it can be shown that in the 

limit of large 𝑛 and very small 𝑝 (given that 𝑛𝑝 is finite) we get a 

new distribution:

❑ This Poisson distribution is valid for integer variable 𝑛 (𝑛 = 0, 1, …) 

and has a single parameter 𝑛 ∙ 𝑝 = 𝜈

❑ Its mean value and variance

❑ In many cases the n can be treated as a continuous variable. 

Also, if 𝜈 is large the Poisson random variable can be treated 

as a continuous variable similar to the normal distribution

𝑓 𝑛; 𝑛 ∙ 𝑝 = 𝜆 =
𝜆𝑛

𝑛!
𝑒−𝜆

𝐸 𝑛 =෍
𝑛/0

∞

𝑛
𝜆𝑛

𝑛!
𝑒−𝜆 = 𝜆 𝑉 𝑛 =෍

𝑛/0

∞

𝑛 − 𝜆 2
𝜆𝑛

𝑛!
𝑒−𝜆 = 𝜆



The Poisson Distribution
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 The probability of getting leukemia is 𝑝 = 0.000248. Using the
approximation Bernoulli-to-Poisson find the 𝑃 of eight or more 
leukemia cases in a population of size 𝑛 = 7076.



Law of large numbers
❑ Building on the knowledge we gained today, we can formulate a very 

advanced theorem, that is considered fundamental for statistics.

❑ Theorem 7. Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 be mutually independent RV (discrete or 

continuous), each having finite mean 𝜇 and variance 𝜎2. Then if we 

take into consideration a new 

RV: 𝑺𝒏 = 𝑿𝟏 + 𝑿𝟐 +⋯+ 𝑿𝒏, then:
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𝐥𝐢𝐦
𝒏→∞

𝒑
𝑺𝒏
𝒏
− 𝝁 ≥ 𝝐 = 𝟎



The Law of Large Numbers

❑ Imagine that our sample space can be divided into 𝑘 events 

(or outcomes that we wish to study): 𝐴𝑗 , 𝑗 = 1,… , 𝑘. What are 

the respective probabilities of such events 𝑝𝑗?

❑ Well, in principle we should conduct an experiment, collect a 
data sample and then calculate the frequency 𝑓𝑗 (we 

assume that 𝑛 below means the number of events of type 𝑗
observed):

❑ So, note that 𝑋𝑗 is a binomial R.V. that takes the following 

values:

❑ Now, how is 𝑓𝑗 related to the probability 𝑝𝑗? Remember, the 

probability is just a number, whilst the frequency is a R.V.
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𝑓𝑗 =
1

𝑛
෍

𝑖/1

𝑖/𝑛

𝑋𝑖𝑗 =
1

𝑛
𝑋𝑗

𝑋𝑗 = ቊ
1 𝑖𝑓𝐴𝑗 𝑜𝑐𝑐𝑢𝑟𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



The Law of Large Numbers

❑ It is essential to understand, the last point – remember frequency will 

always depend on a particular sample! Different sample will yield a 

different frequency.

❑ Having said that, we can however write (remember that 𝑋𝑗 is a 

binomial R.V.!):

❑ In words: the expectation value of the frequency (event 𝐴𝑗) is equal to 

the probability of success. The variance of the frequency about its

mean value can, in turn, be made arbitrarily small – just need to 

collect enough data! (large 𝑛). 

❑ This, actually, is the law of large numbers!
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𝐸 𝑓𝑗 = 𝐸
𝑋𝑗

𝑛
= 𝒑𝒋, 𝐸 𝑋𝑗 = 𝑛𝑝𝑗

𝜎2 𝑓𝑗 = 𝜎2
𝑋𝑗

𝑛
=

1

𝑛2
𝜎2 𝑋𝑗 =

1

𝑛
𝑝𝑗𝑞𝑗 =

𝟏

𝒏
𝒑𝒋 𝟏 − 𝒑𝒋



The Law of Large Numbers

❑ Let’s just think about the variance for a second. It is a product of 

these two elements: 1/𝑛 and 𝑝𝑗 1 − 𝑝𝑗 . The latter is always less 

than unity (the max value is: 𝑚𝑎𝑥 𝑝𝑗 1 − 𝑝𝑗 = 1/4 ), so the 

„smallness” of departure will be governed by the number of 

observed events.

❑ Using this argument and the result from previous slide we can 

justify that the approach, where respective probabilities of events 

that are estimated by frequencies measured directly in 

experiments, is the right one!

❑ The square of the error we make doing so is inversely proportional 

to the number of measurements in an experiment – this kind of 

error is called a statistical one

❑ This is essence of, so called, counting experiments such as: 

number of decaying particles, number of animals with a given 

traits, number of defective items, …
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The Law of Large Numbers

❑ And finally to sum up the LoLN

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be mutually independent random variables (no 

particular P.D.F. is assumed here), each of which have finite 

mean, 𝜇, and variance, 𝜎2. 

Now let’s us define new R.V.: 𝑆𝑛 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑛, 𝑛 = 1, 2, …

The probability that the arithmetic mean of 𝑋1, 𝑋2, … , 𝑋𝑛 differs 

from its expected value more than 𝜖 approaches zero as 𝑛 → ∞:
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lim
𝑛→∞

𝑝
𝑆𝑛
𝑛
− 𝐸

𝑆𝑛
𝑛

≥ 𝜖 = lim
𝑛→∞

𝑝
𝑆𝑛
𝑛
− 𝜇 ≥ 𝜖 = 0



15 Uniform distribution
❑ Uniform P.D.F. is defined for the C.R.V. and given by

❑ So, we say that x is equally likely to be found inside our interval of 

interest (𝑎, 𝑏). The mean and variance:

❑ There is a very important application of the uniform model related to 

the fact that for any R.V. 𝑥 with P.D.F. 𝑓(𝑥) we can easily find 

transformation to a new variable that is uniform.

𝑓 𝑥; 𝑎, 𝑏 = ቐ
1

𝑏 − 𝑎
𝑎 ≤ 𝑥 ≤ 𝑏

0 otherwise

𝐸 𝑥 = න
𝑎

𝑏 𝑥

𝑏 − 𝑎
𝑑𝑥 =

1

2
𝑎 + 𝑏

𝑉 𝑥 = න
𝑎

𝑏

𝑥 −
1

2
𝑎 + 𝑏

2
1

𝑏 − 𝑎
𝑑𝑥 =

1

12
𝑏 − 𝑎 2



16 Uniform distribution
❑ If we call the new transformed variable y, the transformation rule is 

simply related with calculating the C.D.F. Cool!

❑ Remember, 𝑥 – any P.D.F., 𝑦 uniform P.D.F. Next, for any C.D.F. the 

following is true

❑ And using the rule for change of variables

❑ This is the fundamental rule of random number generator programs 

that can give us a list of numbers with any distribution. We are going to 

look at this in more detail.

𝑥 → 𝑦: 𝑦 = 𝐹(𝑥)

𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
න
−∞

𝑥

𝑓 𝑥′ 𝑑𝑥′ = 𝑓(𝑥)

𝑔 𝑦 = 𝑓 𝑥
𝑑𝑥

𝑑𝑦
= 𝑓 𝑥

𝑑𝑦

𝑑𝑥

−1

= 1, (0 ≤ 𝑦 ≤ 1)



17 Exponential distribution
❑ Exp. distribution describes the amount of time between some 

(relatively rare) events

❑ This model is used for C.R.V. 𝑥: 0 ≤ 𝑥 ≤ ∞ and is defined by

❑ The model depends on a single parameter 𝜃. The mean and variance 

are as follow:

❑ The decay time of an unstable particle measured in its rest frame 

follows the exponential distribution. The parameter of the distribution is 

then interpreted as the mean lifetime.

𝑓 𝑥; 𝜉 =
1

𝜉
𝑒
−
𝑥
𝜉

𝐸 𝑥 =
1

𝜉
න
0

∞

𝑥𝑒
−
𝑥
𝜉 𝑑𝑥 = 𝜉

𝑉 𝑥 =
1

𝜉
න
0

∞

𝑥 − 𝜉 2𝑒
−
𝑥
𝜉 𝑑𝑥 = 𝜉2



18 Exponential distribution has no memory

 Example: the amount of time between customers is exponentially 
distributed with a mean of two minutes 𝑋 → Exp 𝜉 = 2 . Suppose that 5 
min passed since the last customer arrived, is now more likely that a 
new will arrive within next 3 min?

𝑃 𝑋 > 5 𝑚𝑖𝑛 + Τ3𝑚𝑖𝑛 𝑋 > 5𝑚𝑖𝑛 =?

Exponential distribution is memorylessness:

𝑃 𝑋 > 𝑡 + Δ𝑡/𝑋 > 𝑡 = 𝑃(𝑋 > Δ𝑡)

The memoryless property says that knowledge of what has 
occurred in the past has no effect on future probabilities.



19 Exponential distribution has no memory

Exponential distribution is memorylessness:

𝑃 𝑋 > 𝑡 + Δ𝑡/𝑋 > 𝑡 = 𝑃(𝑋 > Δ𝑡)

The memoryless property says that knowledge of what has 
occurred in the past has no effect on future probabilities.

Example: The exponential distribution is often used to model the longevity of an 
electrical or mechanical device. 
he lifetime of a certain computer part has the exponential distribution with a mean of 
ten years 𝑋 → Exp 𝜉 = 10 . In this case it means that an old part is not any more likely 

to break down at any particular time than a brand new part. In other words, the part 
stays as good as new until it suddenly breaks. For example, if the part has already 
lasted ten years, then the probability that it lasts another seven years is:

P(X > 17|X > 10) = P(X > 7) = 0.4966
𝑓 𝑥; 𝜉 =

1

𝜉
𝑒
−
𝑥
𝜉



The Poisson and Exponential

Distribution

20

 Exp distribution: time between two events 𝑋 → 𝐸𝑥𝑝 (𝜇) 𝐸 𝑥 = 𝜇. 

 If the time between events is not affected by the times between

previous events (times are independent) then number of events

per unit time has Poisson distribution with 𝜆 = 1/𝜇:

Conversely, if the number of events per unit time follows a Poisson 

distribution, then the amount of time between events follows the 

exponential distribution.

𝑃 𝑋 = 𝑘 =
𝜆𝑘𝑒^ − 𝜆

𝑘!



21 The Poisson and Exponential

Distribution

 There is a direct connection between the exponential distribution 

and the Poisson distribution (process). 

 We may remember that the unique parameter of Poisson

distribution  can be interpreted as a mean number of events per 

unit time.

 So, if we consider a time interval of the length 𝑡 the number of 

events should be 𝑵 = 𝝀 ∙ 𝒕

 Consider now a RV described by the time required for the first

event to occur, 𝑋. 

 The probability that the length of time until the event will exceed 

𝑥 is equal to the probability that no 𝑘 = 0 Poisson events will 

occur in 𝑥.

therefore: 𝑃 𝑘 = 0 =
(𝜆𝑡)0𝑒−𝜆𝑡

0!
𝑃 𝑋 ≥ 𝑥 = 𝑒−𝜆𝑡



22 The Poisson and Exponential

Distribution

CDF for 𝑋 is: 𝐹 𝑥 = 𝑃 0 < 𝑋 < 𝑥 = 1 − 𝑒−𝜆𝑡

if we differentiate CDF:  𝑓 𝑥 = 𝜆𝑒−𝜆𝑡

exponential distribution with 𝜉 = 1/𝜆

example from W. Rosenkrantz book:

In a space shuttle a critical component of an experiment has an 

expected lifetime 𝜆 = 𝐸 𝑇 = 10 days and it is exponentially 

distributed with 𝜉 =
1

𝜆
= 0.1

The mission is scheduled for 10 days. 

How many (𝑛 − 1 =? ) spare parts should we put on the board if we 

want to have the probability of success at least equal to 0.99? 

(All together we will be using 𝑛 components).



23 The Poisson and Exponential

Distribution



24 The Poisson and Exponential

Distribution

adapted from Andrzej Lenda



The Normal Distribution

❑ This is definitely one of the most fundamental PDF with 

great significance in statistics

❑ We can also introduce the standardised variable

corresponding to 𝑋
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𝑓 𝑥 =
1

𝜎 2𝜋
𝑒− 𝑥−𝜇 2/2𝜎2 , −∞ < 𝑥 < ∞

𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥 =
1

𝜎 2𝜋
න
−∞

𝑥

𝑒− 𝑣−𝜇 2/2𝜎2 𝑑𝑣

𝑍 =
𝑋 − 𝜇

𝜎
, 𝜇𝑍 = 0, 𝜎𝑍 = 1

𝑓 𝑧 =
1

𝜎 2𝜋
𝑒−𝑧

2/2, −∞ < 𝑧 < ∞

𝐹 𝑧 = 𝑃 𝑍 ≤ 𝑧 =
1

𝜎 2𝜋
න
−∞

𝑧

𝑒−𝑣
2/2 𝑑𝑣 =

1

2
+

1

𝜎 2𝜋
න
0

𝑧

𝑒−𝑣
2/2 𝑑𝑣



26 The Normal Distribution -CDF

❑ In statistics we deal with two major players: probability density function 

𝑷𝑫𝑭 and cumulative density function 𝑪𝑫𝑭



The Normal Distribution
❑ We then call the 𝑍 the standard score and the distribution

function 𝐹(𝑍) can be related to error function (tabulated) erf(𝑧)
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erf 𝑧 =
2

𝜋
න
−∞

𝑧

𝑒−𝑢
2
𝑑𝑣

𝐹 𝑧 =
1

2
1 + 𝑒𝑟𝑓

𝑧

2

𝑝 −1 < 𝑧 < 1 = 0.6827

𝑝 −2 < 𝑧 < 2 = 0.9545

𝑝 −3 < 𝑧 < 3 = 0.9973



The Normal Distribution

❑ The 𝑍 score tells how many standard deviations the value x is 

above (to the right of) or below (to the left of) the mean, μ.
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𝑝 −1 < 𝑧 < 1 = 0.6827

𝑝 −2 < 𝑧 < 2 = 0.9545

𝑝 −3 < 𝑧 < 3 = 0.9973

The empirical rule known as the 68-95-99.7 rule.



The Normal Distribution
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Exercise (use statistical tables and calculator only): 

A citrus farmer who grows mandarin oranges finds that the 

diameters of mandarin oranges harvested on his farm follow a 

normal distribution with a mean diameter of 5.85 cm and a 

standard deviation of 0.24 cm.

a) Find the probability that a randomly selected mandarin 

orange from this farm has a diameter larger than 6.0 cm. 

Sketch the graph.

b) The middle 20% of mandarin oranges from this farm 

have diameters between ______ and ______.

c) Find the 90th percentile for the diameters of mandarin 

oranges, and interpret it in a complete sentence.

d) The middle 40% of mandarin oranges from this farm are 

between ______ and ______.

e) Find the 16th percentile and interpret it in a complete 

sentence.

https://home.ubalt.edu/ntsbarsh/business-stat/StatistialTables.pdf


❑ The properties of the Gaussian distribution

❑ Relation between binomial and normal distribution

❑ We say, that the variable
𝑋−𝑛𝑝

𝑛𝑝𝑞
is asymptotically normal!

30

The Normal Distribution 

𝑍 =
𝑋 − 𝑛𝑝

𝑛𝑝𝑞

lim
𝑛→∞

𝑝 𝑎 ≤
𝑋 − 𝑛𝑝

𝑛𝑝𝑞
≤ 𝑏 =

1

2𝜋
න
𝑎

𝑏

𝑒−𝑣
2/2 𝑑𝑣



31



More variables

❑ Especially important for the inference is operating with samples 

of measurements (data), and usually we have 𝒏 of them

❑ Define the CDF for this case:

❑ And the PDF in this case:

❑ Any marginal PDF of RV 𝑥𝑘

❑ … and the mean value for 𝑥𝑘

32

𝐹 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑃 𝑋1 < 𝑥1, 𝑋2 < 𝑥2, … , 𝑋𝑛 < 𝑥𝑛

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 =
𝜕𝑛

𝜕𝑥1𝜕𝑥2⋯𝜕𝑥𝑛
𝐹 𝑥1, 𝑥2, … , 𝑥𝑛

𝑔𝑘 𝑥𝑘 = න
−∞

+∞

⋯න
−∞

+∞

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 𝑑𝑥1𝑑𝑥2⋯𝑑𝑥𝑘−1𝑑𝑥𝑘+1⋯𝑑𝑥𝑛

𝐸 𝑥𝑘 = 𝜇𝑘 = න
−∞

+∞

⋯න
−∞

+∞

𝑥𝑘𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 𝑑𝑥1𝑑𝑥2⋯𝑑𝑥𝑛



33 More variables

❑ And the same using the marginal PDF of 𝑥𝑘

❑ Now, in this convention let’s write out the mean, variance and 

covariance

❑ We can also introduce a pseudo-vector notation

𝐸 𝑥𝑘 = 𝜇𝑘 = න
−∞

+∞

𝑥𝑘𝑔𝑘 𝑥𝑘 𝑑𝑥𝑘

𝐸 𝑥𝑖 = 𝝁𝒊

𝐸 𝑥𝑖 − 𝐸 𝑥𝑖
2 = 𝐸 𝑥𝑖 − 𝜇𝑖

2 = 𝝈𝒊
𝟐

𝐶𝑜𝑣 𝑥𝑖 , 𝑥𝑗 = 𝐸 𝑥𝑖 − 𝐸 𝑥𝑖 𝑥𝑗 − 𝐸 𝑥𝑗 = 𝐸 𝑥𝑖 − 𝜇𝑖 𝑥𝑗 − 𝜇𝑗 = 𝒄𝒊𝒋

Ԧ𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑛

𝑓 Ԧ𝑥 =
𝜕𝑛

𝜕𝑥1𝜕𝑥2⋯𝜕𝑥𝑛
𝐹 Ԧ𝑥 Nice and 

compact!



34 More variables

❑ We can also put all our variances and covariances in one 

structure that we call covariance matrix

❑ Also, we can do similar thing („vectorisation”) for the means

❑ The respective elements can be written explicitly (take 2 RV)

𝒞 =

𝑐11 ⋯ 𝑐1𝑛
⋮ ⋱ ⋮
𝑐𝑛1 ⋯ 𝑐𝑛𝑛

𝑐𝑖𝑖 = 𝜎𝑖
2, 𝑐𝑖𝑗 = 𝑐𝑗𝑖

𝐸 Ԧ𝑥 = Ԧ𝜇

𝑐𝑖𝑗 = 𝐸 𝑥𝑖 − 𝜇𝑖 𝑥𝑗 − 𝜇𝑗

𝓒 = 𝑬 𝒙 − 𝝁 𝒙 − 𝝁 𝑻

Ԧ𝑥 =
𝑥1
𝑥2

, Ԧ𝑥𝑇 = 𝑥1, 𝑥2 Ԧ𝜇 =
𝜇1
𝜇2

, Ԧ𝜇𝑇 = 𝜇1, 𝜇2



35 More variables

❑ Now make the complete calculations

❑ We can use our new and compact notation to derive one super 

important rule in statistics: error propagation formula

❑ It combines variable change and multivariate functions of RV

❑ Interested already? Go to the next page!

Ԧ𝑥 − Ԧ𝜇 𝑇 = 𝑥1 − 𝜇1, 𝑥2 − 𝜇2 , Ԧ𝑥 − Ԧ𝜇 =
𝑥1 − 𝜇1
𝑥2 − 𝜇2

𝐸 Ԧ𝑥 − Ԧ𝜇 Ԧ𝑥 − Ԧ𝜇 𝑇 =
𝑥1 − 𝜇1
𝑥2 − 𝜇2

𝑥1 − 𝜇1, 𝑥2 − 𝜇2 =

=
𝑥1 − 𝜇1 𝑥1 − 𝜇1 𝑥1 − 𝜇1 𝑥2 − 𝜇2
𝑥2 − 𝜇2 𝑥1 − 𝜇1 𝑥2 − 𝜇2 𝑥2 − 𝜇2

=
𝜎1
2 𝑐12

𝑐21 𝜎2
2



36 N-dim Gaussian
❑ Soon, we discuss the central limit theorem that states that the sum on 𝑛

independent C.R.V. with finite means 𝜇𝑖 and variances 𝜎𝑖 becomes a 
Gaussian R.V. with mean 𝜇 = σ𝑖 𝜇𝑖 and variance 𝜎 = σ𝑖 𝜎𝑖 for 𝑛 being

large.

❑ Note, this is the justification that the random measurement errors 

should follow the Gaussian distribution!

❑ The N-dim generalisation of the Gaussian formula is given by:

𝑓 Ԧ𝑥; Ԧ𝜇, 𝒞 =
1

2𝜋 𝑁/2 𝒞 1/2
𝑒𝑥𝑝 −

1

2
Ԧ𝑥 − Ԧ𝜇 𝑇𝒞−1 Ԧ𝑥 − Ԧ𝜇

𝒞 - determinant of covariance matrix

𝐸 𝑥𝑖 = 𝜇𝑖 , 𝑉 𝑥𝑖 = 𝜎𝑖 = 𝒞𝑖𝑖 , cov 𝑥𝑖 , 𝑥𝑗 = 𝒞𝑖𝑗



37 N-dim Gaussian
❑ For the pedagogical reasons let’s write explicitly the 2-dim 

case of Gaussian distribution with 𝜌 = ൗcov 𝑥𝑖,𝑥𝑗
𝜎1𝜎2

❑ Which for the independent variables reduces to

𝑓 𝑥1, 𝑥2, 𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝜌 =
1

2𝜋𝜎1𝜎2 1 − 𝜌
×

× 𝑒𝑥𝑝 −
1

2 1 − 𝜌2
𝑥1 − 𝜇1
𝜎1

2

+
𝑥2 − 𝜇2
𝜎2

2

− 2𝜌
𝑥1 − 𝜇1
𝜎1

𝑥2 − 𝜇2
𝜎2

𝑓 𝑥1, 𝑥2, 𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝜌 = 0 =
1

2𝜋𝜎1𝜎2
× 𝑒𝑥𝑝 −

1

2

𝑥1 − 𝜇1
𝜎1

2

+
𝑥2 − 𝜇2
𝜎2

2


