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The Binomial Distribution

We already know this distribution — it emerges when we
consider an experiment such as tossing a coin, rolling a die or
choosing a marble from a box repeatedly.

So, we considering trials. Each outcome will have constant
probability assigned (that should not change in time, and is
the parameter of the Bernoulli prob. model family).

Sometimes we are also interested in processes where the
probability is not constant (out of the scope of our lecture,
however)

We then say that p is a success and g is a failure (in a Bernoulli
sense) and can compose the following P.D.F.

n!

160 = 800 =p0x =0 = (e = e

The RV denote the number of successes x in n frials, x =
0,1,..,n



The Binomial
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Distribution

The mean and variance can be fairly easy calculated:

U= ZxxP(x) = np

. Ex(x — w?2P(x) = np(1 —p)

In the limit of ,,large” n and ,,no too small” p we can very
accurately approximate the Binomial distribution with

Gaussian one
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The Binomial Distribution

Properties of the Binomial P.D.F.

Mean p = np
Variance a2 = npg
Standard deviation o = \Vnpg
Coefficient of skewness a; = 7P
Vnpg
. . I — 6pg
Coefticient of kurtosis a, =3 + npq

We can mote something interesting here

Theorem 6. Let X be the RV giving the number of successes in n
Bernouli trials, so that % Is the proportion of successes. Then if p
Is the probability of success and € is any positive humber:

X
lim prob (‘——p‘ = E) =0
n—oo n
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Poisson distribution

The RV of discrete type:

- the number of outcomes occurring, for instance, during
a given time (e.g. number of radioactive decays in @
sample of radioactive material) t: X = X; = 0,1, 2,...

O number of events in a given region of space - e.g.
number of typing errors per page

or.
« telephone calls arriving during a (short) period of time;
« light quanta (photons) arriving at detecting system;
 number of mutations on a strand of DNA (per unit length);
 number of customers arriving at a counter;
 number of cars arriving at a trac light;
« number of Losses/Claims;
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Poisson distribution

umbers of outcomes occurring in one time interval t are independent
of each other, i.e. the number occurring in one time interval is
independent of the number that occurs in any other disjoint fime
interval (Poisson process has no memory)

a The probability that a single outcome will occur during a very short time
rval t is PROPORTIONAL to the length of interval:

O Let me to infroduce the Poisson distribution:

k

A -1
P(Xt = k,A) _Fe




7 Poisson distribution
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The number of decays of radioactive material in a fixed time
period follows the Poisson distribution (given that the decay
probability is constant over the time period)
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8 Poisson distribution

Let's take the binomial distribution, it can be shown that in the
limit of large n and very small p (given that np is finite) we get @
new distribution:

n

flun-p=12)="-e

A/This Poisson distribution is valid for integer variablen (n = 0,1, ...)
and has a single parametern-p =v

lts mean value and variance

0o /171 (0'e] /'{Tl
E[n] = E n—e =21 Vn] = E (n—2A)2—e =21
n/o N n/0 n!

In many cases the n can be treated as a continuous variable.
Also, if v is large the Poisson random variable can be freated
as a continuous variable similar to the normal distribution




The Poisson Distribution

The probability of getting leukemia isp = 0.000248. Using the
approximation Bernoulli-to-Poisson find the P of eight or more
leukemia cases in a population of sizen = 7076.

np = 7076 x 0.000248 = 1.75 = A.

PX<T)= > e '7

0<x<T7

hence P(X > 8) = 1—0.999518 = 0.000482.

Poisson Distribution Binomial Distribution
X ~ Pois(A) X ~ Bin(n,p)
A=|175 n=/|7076 P =|p=000024
r=|38 0.00047 T=|8 0.00048
0.4
0.3
E 0.2
T
0.1
0.0
0 1 2 3 4 5 6 7 S K - = & @ 2 1
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10 Law of large numbers

Building on the knowledge we gained today, we can formulate a very
advanced theorem, that is considered fundamental for statistics.

Theorem 7. Let X4, X,, -+, X,, be mutually independent RV (discrete or
continuous), each having finite mean u and variance a?. Then if we
take info consideration a new

RV: S, =X +X,+ -+ X, then:

Sa
——nu

llmp< >e> =0
n—>00

Average dice roll by number of rolls

—— Theoretical mean
= Observed averages

0 200 400 600 800 1000
Number of trials
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The Law of Large Numbers

Imagine that our sample space can be divided into k events
(or outcomes that we wish to study): {4;},j = 1, ..., k. What are
the respecftive probabilities of such events p;e

Well, in principle we should conduct an experiment, collect a
data sample and then calculate the frequency f; (we

assume that n below means the number of events of type j
observed):

f 1 i/nX 1X
J 7 n i/1 U= nt

So, note that X; is a binomial R.V. that takes the following
values:

Y. = 1ifAj occured
4 0 otherwise

Now, how is f; related to the probability p;¢ Remember, the
probability is just a number, whilst the frequency is a R.V.

11
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The Law of Large Numbers

It is essential to understand, the last point — remember frequency will
always depend on a particular sample! Different sample will yield a
different frequency.

Having said that, we can however write (remember that X; is a
binomial R.V.1):

elf) = £ 2] =y £l) = )

X; 1 1 1
() = o* (%) = (%) = 110y = P11~y

In words: the expectation value of the frequency (event 4;) is equal to

the probability of success. The variance of the frequency about its
mean value can, in turn, be made arbitrarily small — just need to
collect enough datal (large n).

This, actually, is the law of large numbers!

12
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The Law of Large Numbers

Let’s just think about the variance for a second. It is a product of
these two elements: 1/n and p;(1 — p;). The latter is always less
than unity (the max value is: max{p;(1 — p;) = 1/4}). so the
wsmallness” of departure will be governed by the number of
observed events.

Using this argument and the result from previous slide we can
justify that the approach, where respective probabilities of events
that are estimated by frequencies measured directly in
experiments, is the right one!

The square of the error we make doing so is inversely proportional
to the number of measurements in an experiment — this kind of
error is called a statistical one

This is essence of, so called, counting experiments such as:
number of decaying particles, number of animals with a given
traits, number of defective items, ...

13
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The Law of Large Numbers

And finally to sum up the LoLN

Let X3, X,, ..., X,, be mutually independent random variables (no
particular P.D.F. is assumed here), each of which have finite
mean, u, and variance, 2.

Now let's us define newR.V.. S, =X; + X, + -+ X,,n=1,2, ..

he probability that the arithmetic mean of X, X,, ..., X,, differs
from its expected value more than e approaches zero as n — oo

S S S
li ‘—"—E[—”] >e =l |—"— ‘z =0
n‘l‘.?op<n - €)= P\ K =€

14
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15 Uniform distribution

Uniform P.D.F. is defined for the C.R.V. and given by

1
f(x;a,b)= h—a anSb
0 otherwise

So, we say that x is equally likely to be found inside our interval of
Interest (a, b). The mean and variance:

b
£lx) = | X ix=(a+b)

2

b
V[x]=J (x—%(a+b)> biadle—lz(b—a)2

There is a very important application of the uniform model related to
the fact that for any R.V. x with P.D.F. f(x) we can easily find
transformation to a new variable that is uniform.
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16 Uniform distribution

If we call the new transformed variable y, the transformation rule is
simply related with calculating the C.D.F. Cool!

x—-y:y=F(x)

Remember, x — any P.D.F., y uniform P.D.F. Next, for any C.D.F. the
following is true

d d (*
L= renax = s

And using the rule for change of variables

d dy|™
90) = f) || = F@ |

This is the fundamental rule of random number generator programs
that can give us a list of numbers with any distribution. We are going to
look at this in more detail.
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17 Exponential distribution

Exp. distribution describes the amount of fime between some
(relatively rare) events

This model is used for C.R.V. x:0 < x < o and is defined by

1 %
f;8)=ze ¢
3
The model depends on a single parameter 8. The mean and variance
are as follow: 5 1 ——————
<z — g=t
1 (% _x ] i
E[x]=—j xe Sdx =¢& o8 |
$Jo AN ]
1 @ 2 —E 2 02 b AN -I
Vix] = & (x—&%e Sdx =8¢+ | T S
0 ° r 2 s 4 5

The decay time of an unstable particle measured in its rest fFome
follows the exponential distribution. The parameter of the distribution is
then interpreted as the mean lifetime.




18 Exponential distribution has no memory

Example: the amount of time between customers is exponentially
istributed with a mean of two minutes X - Exp(¢ = 2). Suppose that 5
in passed since the last customer arrived, is now more likely that a
new will arrive within next 3 min?

P(X > 5min + 3min/X > 5min) =?

0.5
0.4
0.3
0.2
0.1
0.0 ;

fix)

Exponential distribution is memorylessness:
PX>t+At/X >t) = P(X > At)

The memoryless property says that knowledge of what has
occurred in the past has no effect on future probabilities.
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19 Exponential distribufion has no memory& N

Exponential distribution is memorylessness:
P(X>t+At/X >t) = P(X > At)

memoryless property says that knowledge of what has
occurred in the past has no effect on future probabilities.

Example: The exponential distribution is often used to model the longevity of an
lectrical or mechanical device.
of a certain computer part has the exponential distribution with a mean of

Exponential Distribution
X ~ exp(A)

e ~) A=
z=|7 (FX=x =) 049659

1. %

f(x;8) =E€ ¢

P(X>17|X>10)=P(X>7)=0.4966

p=EX)=10 eo=S5D(X)=10 o°= Var(X)=100



The Poisson and Exponential
Distribution

Exp distribution: fime between two events X —» Exp (u) E[x] = pu.

If the time between events is not affected by the tfimes between
previous events (times are independent) then number of events
per unit fime has Poisson distribution with 4 = 1/u:

Aen — 2

PX =k)= o

Conversely, if the number of events per unit time follows a Poisson
distribution, then the amount of time between events follows the
exponential distribution.

20
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2] The Poisson and Exponential
Distribution

There is a direct connection between the exponential distribution
and the Poisson distribution (process).

We may remember that the unique parameter of Poisson
distribution can be interpreted as a mean number of events per
unit time. -

So, if we consider a fime interval of the length t the number of
events shouldbbe N =2t

Consider now a RV described by the time required for the first
event to occur, X.

The probability that the length of time until the event will exceed
x i1s equal to the probability that no (k = 0) Poisson events will
OCCUr in x.

(At)oe—lt
0!

P(k=0) = therefore: PX =x) =e ™™
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29 The Poisson and Exponential
Distribution

CDFforXis: F(x) =P(0<X<x)=1-—e*
if we differentiate CDF: f(x) = le™*t

exponential distribution with § = 1/4

example from W. Rosenkrantz book:

In a space shuttle a critical component of an experiment has an
expected lifetime 1 = E(T) = 10 days and it is exponentially

distributed with & = % = 0.1

The mission is scheduled for 10 days.

How many (n — 1 =?) spare parts should we put on the board if we
want to have the probability of success at least equal to 0.99¢

(All together we will be using n components).
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23 The Poisson and Exponential
Distribution

notation: T; — the lifetime of the i-th component; W,, — the total lifetime
for the n-th component:

W,=T14+15s+...+1,.

Both 7; and W, have the same probability density function.
X (t) — number of events (break-downs) occuring in time t.

(M)
r . - - . —At
P(Wn > ) =P(X(t) < n) = ; i

right-hand member: possible numbers of events (failures) during the
time .
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24 The Poisson and Exponential
Distribution

/

o (AR
PWn>t)=> ¢ 0=
k=0
. L A=01 | 4 1
PW, >t)= r—10 |T° 1—|—1—|-..,—|-(“_1)!
If we use two spares (n —1 = 2; n = 3) the probability ia a meagre 92%!!

To have the probability of at least 99 percent we must put n = 5.
And this means four (!) spares (plus the component in the apparatus).

adapted from Andrzej Lenda
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The Normal Distribution

This is definitely one of the most fundamental PDF with
great significance in statistics

e—(x—u)2/202, —o0 < x < oo

f(x)=am

F(x)=P(X<x)=

X
f e~ W-w?/20% 4,
oV21TJ_wo

We can also infroduce the standardised variable
corresponding to X

Z—X i 0,0, =1
o JluZ_ O-Z_
1 2
f(z) = e 22 —0<z<
o\ 21
F(z)=P(Z<2z)= _”2/2 dv = —+ _”2/2 dv
oVamJ_ oV 2T

25
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The Normal Distribution -CD
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In staftistics we deal with two major players: probability density function
PDF and cumulative density function CDF

Cumulative Density Function

Probability Density Function

) jl:ﬂ_

=0,
| =10,

@im)? =
0= 10, =—
@*=50, —|

p=-2 =05 =—

06—

Lo

o8

06

04

02

oo

p=0, 0*=0.2 —
P=0, 0i=10 =
p=0, =50 —
p==2, gi=(5, =—
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The Normal Distribution

e then call the Z the standard score and the distribution
function F(Z) can be related to error function (tabulated) erf(z)

2 (% 2
erf(z) = \/—_ J e %“dv
mTJ_

1 Z
F(z) = 7 [1 + erf <\/—§>]

(-1<z<1)=10.6827 76

0.4

p(—2 < z<2)=0.9545

p(—3 < z<3)=0.9973

27
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The Normal Distribution

The Z score tells how many standard deviations the value x is
above (to the right of) or below (to the left of) the mean, .

p(—1<z<1)=0.6827
p(—2 < z<2)=0.9545 1@

p(—3<z<3)=0.9973

The empirical rule known as the 68-95-99.7 rule.

23




The Normal Distribution |

ExercCise (use statistical fables and calculator only):

ifrus farmer who grows mandarin oranges finds that the
ameters of mandarin oranges harvested on his farm follow a
ormal distribution with a mean diameter of 5.85 cm and @
standard deviation of 0.24 cm.

a) Find the probability that a randomly selected mandarin
orange from this farm has a diameter larger than 6.0 cm.
Sketch the graph.

b) The middle 20% of mandarin oranges from this farm
have diaometers between and

c) Find the 90™ percentile for the diameters of mandarin
oranges, and interpret it in a complete sentence.

d) The middle 40% of mandarin oranges from this farm are
between and

e) Find the 16 percentile and interpret it in a complete
sentence.

29
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The Normal Distribution

The properties of the Gaussian distribution

Mean n

Variance o?

Standard deviation o
Coefficient of skewness a; =0
Coefficient of kurtosis a, =3

Relation between binomial and normal distribution

P _X—np
VNpq
X—np ) 1 jb 5
lim p|a < <b|=——] eV /2dv
n—oo p ( 4 /npq 1/27-[ o

. X—-np . . |
We say, that the variable N Is asymptotically normal!

30




Binomial Distribution

X ~ Bin(n,p)
n =100 p=|02
T=|25 0.13135
0.10
0.08
0.06
0.04
0.02
0.00
] @ D TGN T LT T L S ' T - B - = I
X
E(X W oc=5D(X)=4 o°=Var(X 16
n =100 p=|02
r=|25 0.04338
Binomial Distribution
X ~ Bin(n,p)
n=10 P=|01 0.10
=2 0.19371 0.08

» 5 006
03 © 0.04
0.2 0.02
0.1 0.00
0.0

0 1 2 3 4 5 6 T 8 9 10

Normal Distribution

X ~ N(u, o)
=20 o=|4
=|25 0.10565
10 15 20 25 30 35
X

E(X 0 T SD{X) o "ar{ X) 16
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32 More variables

specially important for the inference is operating with samples
of measurements (data), and usually we have n of them

Define the CDF for this case:

F(xl,xz, ...,xn) == P(Xl < xl,Xz < X7, ...,Xn < xn)
nd the PDF in this case:

n

flxq, %9, 0, xp) = F(xq,X5, ., Xp)

0x10x5 - 0xp,

Any marginal PDF of RV x,

+00

+00
ge) = | [ fOxg ) dadag - dieadies - du

l®)

... and the mean value for x;

400 400
Elxy] = ugx = f f X f(xg, %o, o, Xp)dx,dxy -+ dx,,
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33 More variables
And the same using the marginal PDF of x;,
400 \
Elxi] = p = J Xk Gr (xx)dxy N‘C’E'
Now, in this convention let's write out the mean, variance and
ovarionce
Elx;] = pu;

E[(x; — E[x;1)?] = E[(x; — u;)?] = o}
Cov(x;,x;) = E[(x; — E[x;1) (% — E[x;])] = E[ (i — 1) (% — 15)] = ¢

We can also infroduce a pseudo-vector notation

% = {x1, %Xz, 0, X0}, X = {X1, Xp, e, X}
an . d
f(x) = F(%) Nice an
0x10%7 -+ 0%xp compact!
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34 More variables

e can also put all our variances and covariances in one
stfructure that we call covariance matrix

€11 " Cin
— . * . — 2 S
c=|: =~ = Cii = 07, Cij = Cji

Ch1 " Can

/Also, we can do similar thing (,,vectorisation”) for the means

Cij = E[(Xl - .ul)(x] _ 'u])]
C=E[G-mE-mw']

The respective elements can be written explicitly (take 2 RV)

X = (i;);fT = (x1,%) f= (Z;)»l_ﬂ = (1, U2)
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35 More variables

ow make the complete calculations

VI > o X1~ W1
- =0 — % — o), X — i = (xz _ﬂz)

ElE-DGE -7 = (5 _ ) Ga— pxe — ) =
_ ((xl —pu) ey —pg) (X —pg)(xp — Hz)) _ <U12 C12>

(X2 —p2)(xg —pq)  (xp — p) (X — pp) C21 022

We can use our new and compact notation to derive one super
iImportant rule in stafistics: error propagation formula

It combines variable change and multivariate functions of RV
Interested already? Go to the next page!
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N-dim Gaussian

Soon, we discuss the cenftral limit theorem that states that the sum on n
independent C.R.V. with finite means y; and variances g; becomes a

Gaussian R.V. with mean u = Y, u; and variance ¢ = }}; g; for n being
large.

Note, this is the justification that the random measurement errors
should follow the Gaussian distribution!

he N-dim generalisation of the Gaussian formula is given by:

1
=, 2 . _ - >\NT »—1 > 2
|C| - determinant of covariance matrix

Elx;] = u;, Vix;] = 0; = Cii'COV[xi'xj] = Cij



37 N-dim Gaussian -

For the pedagogical reasons let’s write explicitly the 2-dim

case of Gaussian distribution with p = Cov[xi’xj]/glgz

f(xl'xz' Ui, Uz, 01, 03, p) = X

2 2
ol 1 X1~ H n X2 — H2 _9 X1~ H1\[*2 — H2
P 2(1 - p?) 01 02 ,0 01 02

Which for the independent variables reduces to

2 2
1 <x1 — #1) <x2 — Hz) ]
—— +
2 0-1 0-2

1

) ) ) ) ) ) — O — X
f (X1, %2, 1, 2, 01, 02, P ) 210, 0, exp




