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Joint distributions (I)
❑ If X and Y are two discrete RVs, we can define P.D.F. of X and

Y as follow:

❑ If we assume that: 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑚 and 𝑌 = 𝑦1, 𝑦2, … , 𝑦𝑛 , then 
the probability of the event that 𝑋 = 𝑥𝑖 and 𝑌 = 𝑦𝑗 is given by:

❑ Respective probabilities for 𝑋 = 𝑥𝑖 and 𝑌 = 𝑦𝑗 are given by:
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𝑝 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑓(𝑥, 𝑦)

𝑓(𝑥, 𝑦) ≥ 0

෍
𝑥
෍

𝑦
𝑓(𝑥, 𝑦) = 1

𝑝 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 = 𝑓(𝑥𝑖 , 𝑦𝑗)

𝑝 𝑋 = 𝑥𝑖 = 𝑓1 𝑥𝑖 = 𝑓𝑥 𝑥𝑖 =෍
𝑘
𝑓 𝑥𝑖 , 𝑦𝑘

𝑝 𝑌 = 𝑦𝑗 = 𝑓2 𝑦𝑗 = 𝑓𝑦 𝑦𝑗 =෍
𝑙
𝑓 𝑥𝑙 , 𝑦𝑗



Joint distributions (II)

❑ Because the respective probabilities: 𝑝 𝑋 = 𝑥𝑖 and 
𝑝 𝑌 = 𝑦𝑗 are found on the margins of the joint probability 

table, we call both functions 𝑓1 𝑥𝑖 and 𝑓2 𝑦𝑗 the marginal

probability functions of 𝑋 and 𝑌
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4 Example: Students in a class of 100 were classified according 

to gender (G) and smoking (S) as follows: 

Identify:
• joint distribution function
• marginal distributions

Find the probability that a randomly selected student 
1. is a male; 
2. is a male smoker; 
3. is either a smoker or did smoke but quit; 
4. is a female who is a smoker or did smoke but quit.

s: “now smokes”, 
q: “did smoke but quit” 
n: “never smoked”.



Joint distributions (III)
❑ It is essential to note that for both marginal density functions 

we have:

❑ The two above are equivalent of:

❑ Since all of these functions represent P.D.F. they must be 
normalised, or in other words the probability of all entries is 1

❑ The joint distribution function of RVs 𝑋 and 𝑌 is given by

❑ So, to get a value of 𝐹(𝑥, 𝑦) for a given pair 𝑥, 𝑦 we need to 
sum-up all the entries for which 𝑥𝑖 ≤ 𝑥 and 𝑦𝑗 ≤ 𝑦
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෍
𝑖
𝑓1 𝑥𝑖 = 1,෍

𝑗
𝑓2 𝑦𝑗 = 1

෍
𝑖
෍

𝑗
𝑓 𝑥𝑖 , 𝑦𝑗 = 1

𝐹 𝑥, 𝑦 = 𝑝 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 =෍
𝑢≤𝑥

෍
𝑣≤𝑦

𝑓(𝑢, 𝑣)



Joint distributions (IV)

❑ Again, by analogy we can easily obtain the joint probability 

function for continuous RVs 𝑋 and 𝑌:

❑ The probability can be estimated using the joint P.D.F. as 

follow:
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𝑓 𝑥, 𝑦 ≥ 0,න
−∞

∞

න
−∞

∞

𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = 1

𝑝 𝑎 < 𝑋 < 𝑏, 𝑐 < 𝑌 < 𝑑 = න
𝑎

𝑏

න
𝑐

𝑑

𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦



Joint distributions (V)

❑ Now, we can define the joint distribution function:

❑ We also have the following:

❑ By analogy, the respective marginal functions can be 

defined for both density, 𝑓(𝑥, 𝑦), and distribution, 𝐹(𝑥, 𝑦)
functions
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𝐹 𝑥, 𝑦 = 𝑝 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = න
−∞

𝑥

න
−∞

𝑦

𝑓 𝑢, 𝑣 𝑑𝑢𝑑𝑣

𝜕2𝐹(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
= 𝑓(𝑥, 𝑦)

𝑓1 𝑥 = න
−∞

∞

𝑓 𝑥, 𝑣 𝑑𝑣 , 𝑓2 𝑦 = න
−∞

∞

𝑓 𝑢, 𝑦 𝑑𝑢

𝐹1 𝑥 = 𝑝 𝑋 ≤ 𝑥 = න
−∞

𝑥

න
−∞

∞

𝑓 𝑢, 𝑣 𝑑𝑢𝑑𝑣

𝐹2 𝑦 = 𝑝 𝑌 ≤ 𝑦 = න
−∞

∞

න
−∞

𝑦

𝑓 𝑢, 𝑣 𝑑𝑢𝑑𝑣



❑ We learned how to calculate probability of 

independent events:

❑ This definition can also be used for probability functions. 

Say, 𝑋 and 𝑌 are RVs. If the events 𝑋 = 𝑥 and 𝑌 = 𝑦 are 

independent for all 𝑥 and 𝑦, then we say that 𝑋 and 𝑌
are independent RVs. We also have:

❑ Similarly, we say that 𝑋 and 𝑌 are independent RVs if the 

events 𝑋 ≤ 𝑥 and 𝑌 ≤ 𝑦 are independent for all 𝑥 and 𝑦. 

We can write:
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Independent RVs

𝑝 𝔸 ∩ 𝔹 = 𝑝 𝔹|𝔸 𝑝 𝔸 = 𝑝 𝔹 𝑝 𝔸

𝑝 𝑋 = 𝑥, 𝑌 = 𝑥 = 𝑝(𝑋 = 𝑥) ∙ 𝑝(𝑌 = 𝑦)

𝑓 𝑥, 𝑦 = 𝑓1(𝑥)𝑓2(𝑦)

𝑝 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑝 𝑋 ≤ 𝑥 𝑝(𝑌 ≤ 𝑦) → 𝐹 𝑥, 𝑦 = 𝐹1(𝑥)𝐹2(𝑦)



Conditional P.D.F.s

❑ Let’s assume that 𝑋 and 𝑌 are CRVs. We define the 

conditional density function of  𝑌 given 𝑋, as:

❑ So, to define the conditional P.D.F. we need a joint P.D.F. and 

a marginal one to calculate an appropriate probability we do:
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𝑓 𝑦|𝑥 =
𝑓(𝑥, 𝑦)

𝑓1(𝑥)

𝑓 𝑥|𝑦 =
𝑓(𝑥, 𝑦)

𝑓2(𝑦)

𝑝 𝑐 < 𝑌 < 𝑑 𝑥 < 𝑋 < 𝑥 + 𝑑𝑥 = න
𝑐

𝑑

𝑓 𝑦 𝑥 𝑑𝑦
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Calculate the probability that a randomly selected student is

1. a smoker given that he is a male;

2. female, given that the student smokes.

Example: Students in a class of 100 were classified 

according to gender (G) and smoking (S) as follows: 



Covariance

❑ Next step, as usual, lead to more RVs. Let’s see what’s new if 

we consider two RVs 𝑋 and 𝑌 with joint density function 𝑓(𝑥, 𝑦):

❑ And what about the mixed terms? Analysis leads to the 

covariance
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𝜇𝑋 = 𝐸 𝑋 = න
−∞

∞

න
−∞

∞

𝑥𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦

𝜇𝑌 = 𝐸 𝑌 = න
−∞

∞

න
−∞

∞

𝑦𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦

𝜎𝑋
2 = 𝐸 𝑋 − 𝜇𝑋

2 = න
−∞

∞

න
−∞

∞

𝑥 − 𝜇𝑋
2𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦

𝜎𝑌
2 = 𝐸 𝑌 − 𝜇𝑌

2 = න
−∞

∞

න
−∞

∞

𝑦 − 𝜇𝑌
2𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦

𝜎𝑋𝑌 = න
−∞

∞

න
−∞

∞

𝑥 − 𝜇𝑋 𝑦 − 𝜇𝑌 𝑓 𝑥, 𝑦 𝑑𝑥𝑑𝑦

𝜎𝑋𝑌 = 𝐶𝑜𝑣 𝑋, 𝑌 = 𝐸 𝑋 − 𝜇𝑋 𝑌 − 𝜇𝑌



Theorems regarding covariance

❑ Theorem 1. For any RVs the following is true:

❑ Theorem 2. In case the RVs 𝑋 and 𝑌 are independent:

❑ Theorem 3. For any two RVs we have:

❑ Theorem 4. For any two RVs we have:

❑ NOTE, that the converse of Theorem 9 is not necessarily true!
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𝜎𝑋𝑌 = 𝐶𝑜𝑣 𝑋, 𝑌 = 𝐸 𝑋 − 𝜇𝑋 𝑌 − 𝜇𝑌 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸[𝑌]

𝐶𝑜𝑣 𝑋, 𝑌 = 0

𝑉 𝑋 ± 𝑌 = 𝑉 𝑋 + 𝑉[𝑌] ± 2𝐶𝑜𝑣[𝑋, 𝑌]

𝜎𝑋𝑌 ≤ 𝜎𝑋𝜎𝑌



Correlation coefficient

❑ The covariance gives us a strong hint on how to measure the 
dependence of RVs. If 𝑋 and 𝑌 are independent, then:

❑ On the other hand, if they are completely dependent (e.g., 
𝑋 = 𝑌), then:

❑ So, one can use the following to measure the dependence of 
RVs:

❑ We call it the correlation coefficient and it is easy to note that 
its values vary between [−1,1]

❑ In case where the CC is equal zero, we call the RVs linearly 
uncorrelated. In general, however, the variables may or may 
not be independent. 

13

𝐶𝑜𝑣 𝑋, 𝑌 = 𝜎𝑋𝑌 = 0

𝐶𝑜𝑣 𝑋, 𝑌 = 𝜎𝑋𝑌 = 𝜎𝑋𝜎𝑌

𝜌 =
𝜎𝑋𝑌
𝜎𝑋𝜎𝑌



❑ Let’s assume we know distribution functions of one or more 
RVs. In practice, we are often interested in finding 
distributions of other RVs that depend on them (here we 
focus on CRV)

❑ Theorem 1. Let X be a CRV with P.D.F. given by 𝑓(𝑥). Next, define 
RV 𝑈 = 𝜑(𝑋), where 𝑋 = 𝜔(𝑈). The P.D.F. of 𝑈 is given by 𝑔(𝑢)
where:

❑ For more than one variable things getting a bit more difficult…

❑ Theorem 2. Let 𝑋 and 𝑌 be CRVs having joint P.D.F. 𝑓(𝑥, 𝑦). Let’s 
define new variables 𝑈 = 𝜑1(𝑋, 𝑌) and 𝑉 = 𝜑2(𝑋, 𝑌), where 𝑋 =
𝜔1 𝑈, 𝑉 and 𝑌 = 𝜔2 𝑈, 𝑉 . Then the joint density function of U and 
V is given as:
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Change of variables (I)

𝑔 𝑢 𝑑𝑢 = 𝑓(𝑥) 𝑑𝑥

𝑔 𝑢 = 𝑓 𝑥
𝑑𝑥

𝑑𝑢
= 𝑓 𝜔 𝑢 𝜔′(𝑢)

𝑔 𝑢, 𝑣 𝑑𝑢𝑑𝑣 = 𝑓(𝑥, 𝑦) 𝑑𝑥𝑑𝑦



❑ For multi-dimensional case we have something brand 

new – Jacobian determinant or Jacobian
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Change of variables (II)

𝑔 𝑢, 𝑣 = 𝑓 𝑥, 𝑦
𝜕 𝑥, 𝑦

𝜕 𝑢, 𝑣
= 𝑓(𝜔1 𝑢, 𝑣 , 𝜔1 𝑢, 𝑣 ) 𝐽

𝐽 =
𝜕 𝑥, 𝑦

𝜕 𝑢, 𝑣
=

𝜕𝑥

𝜕𝑢

𝜕𝑥

𝜕𝑣
𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣



❑ Let X be a RV with the mean value 𝜇 and standard deviation 
𝜎. We can define an associated RV that is called standardised 
random variable:

❑ Note, that 𝑋∗ has a mean of zero and a variance of 1 – this is 
why we call it standardised in the first place!

❑ We will be using the SRV all the time – it makes comparison of 
different distributions possible.
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Standarised RVs

𝑍 =
𝑋 − 𝜇

𝜎

𝐸 𝑍 = 0, 𝑉 𝑍 = 1

𝐸 𝑍 = 𝐸
𝑋 − 𝜇

𝜎
=
1

𝜎
𝐸 (𝑋 − 𝜇) =

1

𝜎
𝐸 𝑋 − 𝜇 = 0

𝑉 𝑍 = 𝑉
𝑋 − 𝜇

𝜎
=

1

𝜎2
𝐸 𝑋 − 𝜇 2 = 1



More than 𝜇 and 𝜎

❑ Sometimes we are more interested in the most probable value 

of RV instead of the mean (especially important for 

asymmetric distributions)

❑ The MPV, also called the mode is the value of the random 

variable that corresponds to the highest probability:

❑ In case we have a regular function representing the P.D.F. 

then the mode can be easily found:

❑ If a given P.D.F has just one maximum, we call it a unimodal. 

❑ The median can also be defined using the distribution 

function:
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𝒫 𝑋 = 𝑥𝑚 = 𝑚𝑎𝑥

𝑑

𝑑𝑥
𝑓 𝑥 = 0,

𝑑2

𝑑𝑥2
𝑓 𝑥 < 0

𝐹 𝑥0.5 = 𝒫 𝑋 < 𝑥0.5 = 0.5



More than 𝜇 and 𝜎

❑ It is also useful to define quantiles:

❑ And deciles…
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𝐹 𝑥0.25 = 0.25, 𝐹 𝑥0.75 = 0.75

𝐹 𝑥𝑞 = න
−∞

𝑥𝑞

𝑓 𝑥 𝑑𝑥 = 𝑞



Chebyshev’s Inequality

❑ There is an extraordinary theorem related to the fundamental 

properties of RV (both discrete and continuous). We just need 

both the expectation value and variance to be finite.

❑ Theorem 5. Suppose that 𝑋 is a random variable. Let the mean 

and variance of this RV be 𝜇 and 𝜎2 respectively. If we assume 

that they are both finite, then if 𝜖 is any positive number:

❑ For instance, let 𝑘 = 2:
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𝑝 𝑋 − 𝜇 ≥ 𝜖 ≤
𝜎2

𝜖2

𝜖 = 𝑘𝜎 → 𝑝 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2

𝑝 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2
→ 𝑝 𝑋 − 𝜇 ≥ 2𝜎 ≤

1

4

𝑝 𝑋 − 𝜇 < 2𝜎 ≥
3

4



Chebyshev’s Inequality

❑ For any RV the probability of 𝑋 being 

different from its mean value by more 

that two „standard deviations” is less 
than 1/4 (25%).

❑ … at least 3𝜎 is less than 1/9,

❑ … at least 4𝜎 is less than 1/16,

❑ …..
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st
a

t8
8

❑ Chebyshev’s inequality is a probability theory that guarantees only 

a definite fraction of values will be found within a specific distance 

from the mean of a distribution.

❑ The fraction for which no more than a certain number of values can 

exceed is represented by 1/𝑘2.

❑This simple rule is actually quite incredible – without making any 

assumptions regarding the probability distribution!



Chebyshev’s Inequality

❑ Example:

Suppose that we extract an individual at random from a population 

whose members have an average income of $10 000, with 

a standard deviation of $3 000.

▪ What is the probability of extracting an individual whose income 

is either less than $5 000 or greater than $15 000?

▪ In the absence of more information about the distribution of 

income, we cannot compute this probability exactly. However, 

we can use Chebyshev's inequality to compute an upper bound 

to it.

if RV X denotes income, 𝜇 = 10 000, 𝜎 = 3 000, 𝑋 − 3 000 ≥ 𝑘 and 

𝑘=5 000
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𝑃 𝑋 − 𝜇 ≥ 𝑘 ≤
𝜎2

𝑘2
=
3 0002

5 0002
=

9

25
= 36%

https://www.statlect.com/glossary/standard-deviation

