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2 Random variable (l)

RANDOM VARIABLE - a mapping' of the set of (elementary) events E onto
the set of real numbers R.

For instance:
height of a person met in the street;
number of people in Krakow down with flu each day;
number of meteorites falling each year per 1 km?;

number of minutes you wait every day for the street-car;

number of accidents per months at a given street-intersection;
strength of a climbing-rope;

a result of every measurement.
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3 Random variables (Il)

There is no surprise, we can have either discrete or continuous RV

Now, let’s have a discrete RV X that can assume the following values:
X ={x,x,, ..., x,}. SUpPOSE, these values are assumed with certain
probabilities:

pX=x)=f(x),i=12,..,n

We can infroduce probability function, that we call probability
distribution for RV X

In general, any function can be a probability function if:

Its values are always positive: f(x) 2 0vx e X c Q
The sum taken over all possible x; is: Yy f(x) =1

It is easy to extend all of this to RVs that are continuous, so we will not
do that here (in principle we should remember that the sum changes
into the integral)
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Random variables (lll)

Ex. 2 Again, let’s look at the double coin toss. How do we define the
probability distribution function (P.D.F.)?

The sample space Q= {HH,HT,TH,TT}, each of these events has
the same probability p(HH) = p(HT) = --- = 1/4

/ Using the Ex. 1 we can write:

p(X =0) =p(T) =1/4

pl A

p(X=1)=p(HTNTH) =1/2

p(X =2) =p(HH) = 1/4
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Distribution function (l)

Closely related to P.D.F. is the cumulative distribution
function (CDF)

We define it as follow:

F(x) = p(X < x)

/

/- The CDF has the following properties
F(x) must be non-decreasing

Asymptotic behaviour
Jim F(:) =0, lim FG) = 1
DF is continuous from the right

hli)rglJrF(x+h) =F(x), Vx €X
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Distribution function (ll)

Ex. 4 Again, taking the two tosses example, we can work
out the distribution function.

(0 —oo<x<0

1

Z 0<x<1
F(x)=<3

— 1<x<?2

2 <x

(1 2<x<o00

F(x)

1

-

It has no any influence in the case of continuous RV; but for a discrete

RV it makes quite a difference
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7 Continuous RV

There is a natural extension to continuous RV, however the
exact definition is based on the properties of the
distribution function

Def.1 We say, that a non-discrete random variable X is
continous if its distribution function may be represented as:

F(x)=P(X<x) = jx fuw)du,(—o0 < x < )

We know already, that the function f(x) should represent
a P.D.F:

f(x)=0 j f(x)dx =1
There are so_me interesting properties related to the CRV

The probability that X takes on any one particular value is
zerol!

The interval probability can be estimated as:

b
p(a< X <b) =j f(x)dx




8 Graphical interpretation

Let f(x) be the density function for a random variable X. This
function can be represented as a graph by some curve

/@

/op(a<X<b)

//T\

a b x

The distribution function is, in furn, a monotonically increasing
function which value goes from 0 to 1

F(x)

e
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Independent RVs

We learned how to calculate probability of independent
events:

p(ANB) =p(B|A)p(A) = p(B)p(A)

This definition can also be used for probability functions. Say, X
nd Y are RVs. If the events X = x and Y = y are independent
for all x and y, then we say that X and Y are independent RVs.

We also have:

pX=xY=y)=pX=x)-p(Y =y)

fxy) = i) f2(y)

Similarly, we say that X and Y are independent RVs if the
events X < x and Y < y are independent for all x and y. We
can write:

pX<x,Y<y)=pX=<=x)p(Y <y) > F(x,y) = FL(x)F,(y)
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10 Mathematical Expec’ra’rioﬁ

The mathematical expectation (or expected value) is one of
the most important notfions in statistics. Let’s start (as usual...)
from a DRV

Definition 1. Assume that X is a DRV having the possible values
as follow {x{, x,, ..., x,}, the expectation of X is defined as:
i/n

BIX) =y pX =) ook pX =) = ) p(X =30

i/n

EIX) = xy - fQ) + -+ X fCt) = ) 2+ fx0)
i/1

where: f(x;) is the DRV's P.D.F.

NOTE. When the respective probabilities for events x; are all
equal, we have (arithmetic mean):

X1 +x,+--+x 1
ElY) = === )
l
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11 Mathematical Expectation

For a CRV X having P.D.F. f(x), the expectation of X is
defined as follow (we always silently assume that the
infegral converges absolutely):

E[X] = Jooxf(x)dx

If we know completely the P.D.F. of RV X then we call E[X]
the mean value of X and denote it by uy (frue mean
value)

Various notation: E(X), X, u, m (estimated mean value)

Since, the mean gives a single value that represents the
values of RV X we call it a measure of central tendency
(remember we loose something here — data reduction)
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Mathematical Expectation

NOTE something quite here — the mean value is a single
number - it is not a RV! We call it a parameter of a RV X's
P.D.F.

The crucial point is that we assumed that we know and
understand the P.D.F. of a RV X —we are going to learn
oon that this is usually not the case! All we can know is @
sample drawn from a population that is described by an
unknown P.D.F. This is the core of statistical reasoning!



13 Functions of RV

Functions of RV are of great importance for stafistics

Interestingly such function is also a RV itself! For instance,
you calculate how much you earn when you sell x items,
each 10E (X is a RV):

Y = K(X)

ow, we can write formulas for the expectation value in
a similar manner to defined in previous slides:
i/n i/n
EIK(X)] = ./1K(xi) fx) = _/1K(Xi) p(X = x;)
l l

E[K(X)] = j K(X) f (x)dx

In particular we can pick a special function: K(X) =
(X — a)!, and its expectation values are called I-th
moments about point a (constant)

m; = E[(X — a)']




Moments

The r'" moment of a RV X about the mean u, also called
the rth central moment, is defined as follow:

u =E[(X—w)"],r=0,1,2, ..

Ho = 11:“1 = 0!:“2 = 0-21

Assuming absolute convergence we write explicitly for both
DRV and CRV:

= Y = @) e = [ Ge= T F )

The r'" moment of a RV X about the origin, also called the rth
raw moment, is defined as:

ur = E[X"]

14
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Moments

Let's consider the case of a continuous variable:

FLo

23

f2

H3

f4

[
[
[
[

2)? f(z)d

)0 f(x)dx =1

.r) flx)dx =0

lr € VAR(X) = 02(X) = VARIANCE

.:) f(r)dr = SKEWNESS

)t f(x)dr = KURTOSIS

@ VARIANCE — a measure of the spread (dispersion) (always > 0)
o SKEWNESS — a measure of asymmetry

o KURTOSIS

a measure of the spread as compared with a special

type of distribution — normal distribution

15



Moments |

A general formula that relates the both types of moments can be

written as follow:
! r ! (T ! j !
e = ptp = (1) gt e (<1 (]) Hr—jtt? 4 (1) pop”

Uy = Uy — U*

Uz = pz — Supu + 2p°

Note, by using moments we can describe any probability distribution
function. This is not triviall Sometimes we do not know (even in
principle) whatis the P.D.F. of a RV X

Assuming some concrete function may lead to completely wrong
results of statistical analysis. However, we still can calculate the
moments using a sample data taken experimentally

We need, in principle, infinite number of moments to describe a
given P.D.F.

16
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17 Mathematical Expectation

Example 1. Say, that we play a game where we toss a single
die (assumed fair). A player wins if she/he has 2 (20$) or 4
(40%), looses if a 6 turns up. Find the expected amount of
money to be won:

E[X] = (0%) - <1> + (20%) - <1) + (0%) - <1) + (409%) - <1>
6 . 6 5 6 ; 6 ,
$) - )+ (—309) - =5
+(0 6). 5).

X; 0 +20 0 +40 | 0 | =30

fa)| 16 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6

A player is expected to win 5%. So, for the game to be fair
she/he is expected to pay 5% in order to play the game...

For fun — you can check if ,,Euro Millions” is a fair game...
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18 Mathematical Expectation

Example 2. Let’s have a look how this works for a CRV. Say, the
density function of a CRV X is given by:

f(x):{%x 0<x<?2

0 otherwise

E[X] :JOO xf(X)dx=J2x(%x>dx=J2x;dx=
_w 0 0




Theorems on E[X]

Theorem 1. If ¢ is any constant, then:

E[cX] = cE[X]

FleX] = ) exif () = cxif (1) + =+ + cxnf () =
= c(rf Ge) + - xnf () = € ) xif () = cE[X]

Theorem 2. If X and Y are any RVs, then:

E[X + Y] = E[X] + E[Y]

EIX+Y] = Zizj(xi + }’j)f(xi,yj) = Zizj xif(xi,yj) N
+Ziz,.yff(xi»yf) = E[X] + E[Y]

19



Theorems on E[X]

Theorem 3. If X and Y are independent RVs, then

E[XY] = E[X]E[Y]

If X and Y are independent their joint P.D.F. can be factorised:

fxy) = fi0)f2(y)

SIS ZZ jxiyff (x0,yj) = zizjxinfl(xi)fz(Yj) =
— Zi [Xif1(xi) Zj yjfz()’j)] = Zi[xifl(xi)E[Y]] —

= E[Y] Zixifl (x) = E[X]E[Y]

20
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Variance

Another important metric used in statistics is variance

VIX] = E[(X — w)?]

The variance cannot be a negative number, the positive
square root of the variance is called the standard
deviation

ox = JVIX] = VE[(X — 1)?]

Writing explicitly we have:

i/n
VIXI =0f = > (o= w2 ()

i/1
If the probabilities are all equal, we have

1
02 =—[(ry —)? + O = )% + - + (= )?]

21



Variance

In case when X is a CRV, we can write the variance as:

o3 = f (x — W2 f(x)dx

We say that the variance is a measure of the dispersion
(scatter) of the values of the RV about the mean value u. For
instance, if the values tend 1o be concentrated close to

the mean, the variance is small
The same

mean
value

o Small variance

_~ Large variance

22



Theorems regarding  “ "
variance

Theorem 4. Let X be any RV:

0% = E[(X —w)?®] = E[X?] — p? = E[X?] — E*[X]

Theorem 5. If ¢ is any constant, we have:
VicX] = c?V[X]

Theorem 6. The quantity E[(X — a)?] is a minimum when
a = E[X]

Theorem 7. |If X and Y are independent RVs,
VIX + Y] = V[X] + V[Y], 08,y = 0f + 0f

VIX = Y] =VI[X]+ V[Y],08_y = 0f + 0

23
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Change of variables (l)

Let’s assume we know distribution functions of one or more
RVs. In practice, we are often interested in finding
distributions of other RVs that depend on them (here we

focus on CRV)

Theorem 1. Let X be a CRV with P.D.F. given by f(x). Next,
efine RV U = ¢(X), where X = w(U). The P.D.F. of U is

given by g(u) where:

glayl = f(x)ldx|

dx
gy =fx) d—y‘ = fw()w' )

Z—f} is the derivative of X with respect fo Y.

24
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Change of variables (1)

For a non-monotonic y = y(x) dependence one must take into account
that different regions of the X variable may be mapped into one (the same)
region of the Y variable. The g(v) pdf in such a region will be a sum of f(x)

pdf's multiplied by |Z—;| over all the regions of X which have been mapped
into the given region of Y .

/' g)ldyl = f(x)]dx|

JI."H'

--------- ~ y=y(x) —
- / vy 9») =f(

%

e dy f
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dx
dy

a(y)




