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Intro
❑ Lectures ~30 hours

❑ Tutorials ~20 hours (compulsory!)

❑ Computer Labs ~10 hours (compulsory!)

❑ Final grades – 0.3 tutorial + 0.2 labs + 0.5 exam

❑ Note, you may not fail any of these

❑ Our contact details

❑ Agnieszka Obłąkowska-Mucha (lectures): 

amucha@agh.edu.pl

Saliha Bashir (tutorials and labs): bashir@agh.edu.pl

❑ Building D11/106
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Intro
❑ Course web page:  

https://agnieszkamucha.github.io/Statistics/

❑ Textbook: Introductory Statistics, OpenStax Access online

❑ Lectures: slides with discussions

❑ Tutorials: 

1. find assignments BEFORE the day of tutorial

2. find and read matching lecture or chapter in textbook

3. solve or think over the assignments

❑
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https://agnieszkamucha.github.io/Statistics/
https://openstax.org/details/introductory-statistics


Experiments
❑ Our primary concern in Statistics is analysing data collected from 

an experiment – this is an essential notion and we should define it 
well

❑ Just as in the lab, we define an experiment as a procedure to be 

followed – the outcome of this procedure constitutes the result 

which can be represented as a single quantity or a set of 

quantities or a distribution

❑ These measured quantities can be discrete or continuous

❑ Note: no matter how accurately all conditions of the experiment 

are maintained, its results will in general differ – the measurement 

has an intrinsic random component

❑ This can be attributed to the very nature of the observed 

phenomenon or limited accuracy of the measurement

❑ This is why we should always use statistics to process the results of 
an experiment and understand them
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𝑹𝒆𝒔𝒖𝒍𝒕 = 𝑽𝒂𝒍𝒖𝒆 ± 𝑼𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚 [𝑼𝑵𝑰𝑻]



Sample space (I)
❑ Def.1 A set Ω that consists of all possible outcomes of an

experiment is called a sample space, then each outcome is 

called a sample point. Often, we can define more than one 
sample space. 

❑ Ex.1 Imagine we toss a die once – a sample space of all 
possible results we can get is given by Ω = 1, 2,… , 5, 6

❑ Ex. 2 Let’s toss a coin twice. We can use the following: 0 == 
tails and 1== heads. The sample space can be then 

represented on a graph like this:

The above corresponds to a space: Ω = {𝐻𝐻,𝐻𝑇, 𝑇𝐻, 𝑇𝑇}
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Sample space (II)

❑ Def. 2 If a sample space has a finite number of points, it is called a 

finite sample space. 

❑ Def. 3 If a sample space has as many points as there are natural 

numbers (1, 2, 3, …, N, …), it is called a countably infinite space. 

❑ Def. 4 If a sample space has as many points as there are in an any 
interval on the x-axis (a ≤ 𝑥 ≤ 𝑏), it is called a non-countably infinite 

space.

❑ Def. 5 A sample space that is finite or countably infinite is called a 

discrete sample space.

❑ Def. 6 A sample space that is non-countably infinite is called a 

continuous sample space.
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Events (I)

❑ Def. 7 An event is a subset 𝔸 of the sample space Ω, i.e., it is a set

of possible outcomes that we are interested in.

❑ Def. 8 If the outcome of an experiment is an element of 𝔸 we

say that the event 𝔸 has occurred. An event consisting of a

single point, belonging to sample space, is called an elementary

event.

❑ Ex. 3 We can use the sample space from ex. 2 to define an
event 𝔸: ‚only one head comes up’.
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Events (II)
❑ Def. 9 We call the sample space the certain event, since an element 

that belongs to Ω must occur in our experiment.

❑ Def. 10 By analogy, an empty set ∅, is called the impossible event.

❑ So, using set operations on events we can obtains other events!

❑ The union, 𝔸 ∪ 𝔹, of 𝔸 and 𝔹 means „either 𝔸 or 𝔹 or both”

❑ The intersection, 𝔸 ∩ 𝔹, of 𝔸 and 𝔹 means „both 𝔸 and 𝔹”

❑ The complement, 𝔸′, means „not 𝔸”

❑ Event 𝔸 − 𝔹 = 𝔸 ∩ 𝔹′, means „𝔸 but not 𝔹”. We have in particular, 

𝔸′ = Ω − 𝔸

❑ Def. 11 If the sets corresponding to events 𝔸 and 𝔹 are disjoint, 𝔸 ∩
𝔹 = ∅, we say that the events are mutually exclusive. They cannot 

both occur at the same time

❑ Def. 12 We say that a collection of events 𝔸1, 𝔸2, … , 𝔸𝑛 is mutually 

exclusive if and only if every pair in the collection is mut. excl.
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Probability (I)

❑ The main premise here is that we can assign to events numbers

that can measure the probability

❑ Def. 13 If an event can occur in 𝑛 different ways out of a total 

number of 𝑁 possible ways, all of which are equally likely, then the 

probability of the event equals to 𝑛/𝑁

❑ Ex. 5 In the case of a fair coin toss we have two equally likely 
events, so it seems reasonable to assign them probability 𝑝 𝐻 =
𝑝 𝑇 = 1/2. If in an experiment we measure a bias in the number of 

heads or tails we will call the coin loaded

❑ Def. 14 If after 𝑁 repetitions of an experiment, where 𝑁 should be 

large, a particular event is observed to occur 𝑛 times, then the 

probability of the event is 𝑛/𝑁
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Probability (II)
❑ There are some serious troubles with both definitions given in the 

previous slide…

❑ How can we tell if events are equally likely?

❑ What does it mean that a sample should be large?

❑ These issues are „cured” by the axiomatic approach to the  
probability. The core element in the axiomatic definition is a notion 

of a probability function 𝑝 𝔸 , which gives a number related with 

each event.

❑ Axiom 1 For every event: 𝑝 𝔸 ≥ 0

❑ Axiom 2 For the certain event 𝑝 Ω = 1

❑ Axiom 3 For any number of mutually exclusive events

𝔸1, 𝔸2, … , 𝔸𝑛 𝑝 𝔸1 ∪ 𝔸2∪⋯∪ 𝔸𝑛 = 𝑝 𝔸1 + 𝑝 𝔸2 +⋯+
𝑝 𝔸𝑛
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Probability (III)

❑ Theorem 1

If 𝔸1 ⊂ 𝔸2 → 𝑝(𝔸1) ≤ 𝑝(𝔸2)

❑ Theorem 2

For every event 𝔸 → 0 ≤ 𝑝(𝔸) ≤ 1

❑ Theorem 3

The impossible event has probability zero 𝑝 ∅ = 0

❑ Theorem 4

If 𝔸′ is the complement of 𝔸, then 𝑝 𝔸′ = 1 − 𝑝(𝔸)

❑ Theorem 5

If 𝔸1 and 𝔸2 are any two events, then

𝑝 𝔸1 ∪ 𝔸2 = 𝑝 𝔸1 + 𝑝 𝔸2 − 𝑝(𝔸1 ∩ 𝔸2)

❑ Theorem 6

For any events 𝔸1 and 𝔸2 𝑝 𝔸1 = 𝑝 𝔸1 ∩ 𝔸2 + 𝑝(𝔸1 ∩ 𝔸′2)

11



Examples

❑ Ex. 5 Lottery

A container holds 49 balls, each with a number 1 through 49. 

During the drawing six of them are taken out without replacement. 

What is the probability that a player has chosen exactly the same 

numbers?

Say, 𝑝(1) is the probability to chose the first number and is equal: 

𝑝 1 =
1

49
, then the probability to chose by the player the second 

number is 𝑝 2 =
1

48
… and so on. At the end we have:

Now, the order is not important!

Where, 𝐶6
49 is the number of combinations of 6 elements out of 49.

12

𝑝 1, . . , 6 =
1

49 ∙ 48 ∙ 47 ∙ 46 ∙ 45 ∙ 44
=
43!

49!

𝑝 𝑤𝑖𝑛 =
6! 43!

49!
=

1

49
6

=
1

𝐶6
49



Examples

❑ Ex. 5 „Three gates game”

In a TV game a contestant have three identical gates to 

choose from. Behind one of them there is a luxury car and 

other two sport goats. First, the player is asked to pick one gate. 

Say, he chooses gate 1. The host of the show opens one door 

which we call 2 and reveal a goat. Now, the competitor is 

given a Chance to either stay with his original pick or to choose 

the remaining gate (we call it gate 3). What she/he should do?

Can the probability of winning be modified by changing the 

initial choice?
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Conditional probability

❑ Conditional probability, i.e., probability is not absolute (subjective point
of view may have a significant impact on a value you assign to an
event!)

❑ Def.1 Let 𝔸 and 𝔹 be two events and assume that 𝑝 𝔸 > 0. We
denote by 𝑝 𝔹|𝔸 the probability of event 𝔹 given that event 𝔸. Since
we know that 𝔸 has occurred it becomes the new sample space instead
of the original one Ω. Thus, we define the conditional probability as:

❑ By requiring the occurrence of event 𝔸 we make the event space to
collapse – original probabilities are redefined – we could say that values
of probability that we assign depend on our knowledge!
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𝑝 𝔹|𝔸 =
𝑝 𝔸 ∩ 𝔹

𝑝 𝔸

𝑝 𝔸 ∩ 𝔹 = 𝑝 𝔹|𝔸 𝑝 𝔸



Conditional probability
❑ Ex. 1 We have a fair die which is tossed once. Calculate the

probability that a single toss of a die will result in a number less

than 4. Repeat the math if it is given that the toss resulted in an

odd number.

❑ If no additional information is available we estimate the

probability of turning 4 as a union of fundamental events 1,

2, 3:

❑ Now, we know that an event „an odd number turned” has

occurred, we have:

❑ In this case we „added knowledge” to our calculations!

We knew that an odd number turned.

❑ So, the values of probabilities we are going to assign to

events depends on the extent of our knowledge about this

event. In time it can change!
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𝑝 𝔹 = 𝑝 1 + 𝑝 2 + 𝑝 3 = 1/2

𝑝 𝔸 =
3

6
=
1

2

𝑝 𝔸 ∩ 𝔹 =
2

6
=
1

3
→ 𝑝 𝔹|𝔸 =

1/3

1/2
=
2

3



Some teorems on CP

❑ Theorem.2 Imagine that we have an event 𝔸 that can be

represented by n mutually exclusive events 𝔼𝑖 (Ω = 𝔼1 ∪ 𝔼2 ∪ …

∪ 𝔼𝑛), then

16

𝑝 𝔸 =
𝑖/0

𝑖/𝑛

𝑝 𝔸 ∩ 𝔼𝑖 = 𝑝 𝔼1 𝑝 𝔸|𝔼1 +⋯+ 𝑝 𝔼𝑛 𝑝 𝔸|𝔼𝑛



Independent events

❑ It is kind of easy to notice, that if there is no influence of
event 𝔸 on event 𝔹 (so it does not matter if the former event
occur or not), then

❑ In other words we say that 𝔸 and 𝔹 are independent events

❑ This definition can easily be extended to any number of
events. Say, we have three events 𝔸1, 𝔸2, 𝔸3 and they are
pair-wise independent

❑ Now, putting this all together, we come to a very interesting
conclusion that is called…
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𝑝 𝔹|𝔸 = 𝑝 𝔹

𝑝 𝔸 ∩ 𝔹 = 𝑝 𝔹|𝔸 𝑝 𝔸 = 𝑝 𝔹 𝑝 𝔸

𝑝 𝔸𝑖 ∩ 𝔸𝑗 = 𝑝 𝔸𝑖 𝑝 𝔸𝑗 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,3

𝑝 𝔸1 ∩ 𝔸2 ∩ 𝔸3 = 𝑝 𝔸1 𝑝 𝔸2 𝑝 𝔸3



Bayes’ Theorem (I)

❑ Let’s assume that the sample space can be divided into mutually

exclusive events: Ω = 𝔼1 ∪ 𝔼2 ∪ … ∪ 𝔼𝑛 (see also plot on slide 16),

by this we enforce that any of 𝔼𝑖 must occur. Now, if 𝔸 is any

event from this sample space then we have the following

theorem:

❑ By means of Bayes theorem we can estimate probability of

various events that can cause 𝔸 to occur. Therefore, it is also

called a theorem on prob. of causes.
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𝑝 𝔼𝑖|𝔸 =
𝑝 𝔼𝑖 𝑝 𝔸|𝔼𝑖

σ
𝑖/0
𝑖/𝑛

𝑝 𝔼𝑖 𝑝 𝔸|𝔼𝑖
=
𝑝 𝔼𝑖 𝑝 𝔸|𝔼𝑖

𝑝 𝔸



19 Bayes’ Theorem (II)

❑ Pictures are nice, so…

𝑝 𝔸|𝔹 =
𝑝 𝔸 𝑝 𝔹|𝔸

𝑝 𝔹

𝒑 𝔸 - prob. of A, we have no knowledge of B

𝒑 𝔸|𝔹 - here, we are smarter, we know B has occurred



20 Bayes’ Theorem (III)

❑ One amazing thing about Bayes approach is capability of

working out probabilities of events that cannot be even

considered by frequentists (which deal with repeatable cases)

❑ A critical difference (that is very useful for experimentalists)

between frequentist and Bayesian methods is that the latter can

give a probability that a value of unknown parameter (something

that came from theory for instance) lies within a certain interval

❑ Note, since a parameter is just a number and cannot be

considered a random variable, this procedure would not be

possible in a classical probability



Bayes’ Theorem (IV)
❑ For a long time Bayes theorem was treated as not so interesting rule that is

a simple consequence of conditional probability definition. However,
recently the interpretation of the rule was revisited what sparked a new
branch of statistics called Bayesian approach.

❑ Often treated as alternative/complementary way of assigning probabilities

❑ Let’s rewrite the theorem as follow:

❑ Here we use subjective probabilities, that express a degree of believe that
something is true – that is the core of the Bayesian approach

❑ „Theory” represents a hypothesis, „data” represent the outcome of an
experiment

❑ 𝑝 𝑡ℎ𝑒𝑜𝑟𝑦 - represent a prior probability, or a degree of believe before
measurement, 𝑝 𝑑𝑎𝑡𝑎|𝑡ℎ𝑒𝑜𝑟𝑦 - represent likelihood of getting the data
given the theory is true

❑ The 𝑝(𝑡ℎ𝑒𝑜𝑟𝑦|𝑑𝑎𝑡𝑎), posterior, tells us, how the prior probability should be
changed given the observed data
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𝑝(𝑡ℎ𝑒𝑜𝑟𝑦|𝑑𝑎𝑡𝑎) ∝ 𝑝 𝑑𝑎𝑡𝑎|𝑡ℎ𝑒𝑜𝑟𝑦 𝑝 𝑡ℎ𝑒𝑜𝑟𝑦



22 Bayes’ Theorem Example

https://www.mathsisfun.com/data/bayes-theorem.html



23 Bayes’ Theorem Example



24 Bayes’ Theorem Example


