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2 Before we go further…

❑ Recap and reminder

❑ In statistics we deal with two major players: probability density 

function 𝑷𝑫𝑭 and cumulative density function 𝑪𝑫𝑭



More variables

❑ Especially important for the inference is operating with samples 

of measurements (data), and usually we have 𝒏 of them

❑ Define the CDF for this case:

❑ And the PDF in this case:

❑ Any marginal PDF of RV 𝑥𝑘

❑ … and the mean value for 𝑥𝑘

3

𝐹 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑃 𝑋1 < 𝑥1, 𝑋2 < 𝑥2, … , 𝑋𝑛 < 𝑥𝑛

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 =
𝜕𝑛

𝜕𝑥1𝜕𝑥2⋯𝜕𝑥𝑛
𝐹 𝑥1, 𝑥2, … , 𝑥𝑛

𝑔𝑘 𝑥𝑘 = න
−∞

+∞

⋯න
−∞

+∞

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 𝑑𝑥1𝑑𝑥2⋯𝑑𝑥𝑘−1𝑑𝑥𝑘+1⋯𝑑𝑥𝑛

𝐸 𝑥𝑘 = 𝜇𝑘 = න
−∞

+∞

⋯න
−∞

+∞

𝑥𝑘𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 𝑑𝑥1𝑑𝑥2⋯𝑑𝑥𝑛



4 More variables

❑ And the same using the marginal PDF of 𝑥𝑘

❑ Now, in this convention let’s write out the mean, variance and 

covariance

❑ We can also introduce a pseudo-vector notation

𝐸 𝑥𝑘 = 𝜇𝑘 = න
−∞

+∞

𝑥𝑘𝑔𝑘 𝑥𝑘 𝑑𝑥𝑘

𝐸 𝑥𝑖 = 𝝁𝒊

𝐸 𝑥𝑖 − 𝐸 𝑥𝑖
2 = 𝐸 𝑥𝑖 − 𝜇𝑖

2 = 𝝈𝒊
𝟐

𝐶𝑜𝑣 𝑥𝑖 , 𝑥𝑗 = 𝐸 𝑥𝑖 − 𝐸 𝑥𝑖 𝑥𝑗 − 𝐸 𝑥𝑗 = 𝐸 𝑥𝑖 − 𝜇𝑖 𝑥𝑗 − 𝜇𝑗 = 𝒄𝒊𝒋

Ԧ𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑛

𝑓 Ԧ𝑥 =
𝜕𝑛

𝜕𝑥1𝜕𝑥2⋯𝜕𝑥𝑛
𝐹 Ԧ𝑥 Nice and 

compact!



5 More variables

❑ We can also put all our variances and covariances in one 

structure that we call covariance matrix

❑ Also, we can do similar thing („vectorisation”) for the means

❑ The respective elements can be written explicitly (take 2 RV)

𝒞 =

𝑐11 ⋯ 𝑐1𝑛
⋮ ⋱ ⋮
𝑐𝑛1 ⋯ 𝑐𝑛𝑛

𝑐𝑖𝑖 = 𝜎𝑖
2, 𝑐𝑖𝑗 = 𝑐𝑗𝑖

𝐸 Ԧ𝑥 = Ԧ𝜇

𝑐𝑖𝑗 = 𝐸 𝑥𝑖 − 𝜇𝑖 𝑥𝑗 − 𝜇𝑗

𝓒 = 𝑬 𝒙 − 𝝁 𝒙 − 𝝁 𝑻

Ԧ𝑥 =
𝑥1
𝑥2

, Ԧ𝑥𝑇 = 𝑥1, 𝑥2 Ԧ𝜇 =
𝜇1
𝜇2

, Ԧ𝜇𝑇 = 𝜇1, 𝜇2



6 More variables

❑ Now make the complete calculations

❑ We can use our new and compact notation to derive one 

super important rule in statistics: error propagation formula

❑ It combines variable change and multivariate functions of RV

❑ Interested already? Go to the next page!

Ԧ𝑥 − Ԧ𝜇 𝑇 = 𝑥1 − 𝜇1, 𝑥2 − 𝜇2 , Ԧ𝑥 − Ԧ𝜇 =
𝑥1 − 𝜇1
𝑥2 − 𝜇2

𝐸 Ԧ𝑥 − Ԧ𝜇 Ԧ𝑥 − Ԧ𝜇 𝑇 =
𝑥1 − 𝜇1
𝑥2 − 𝜇2

𝑥1 − 𝜇1, 𝑥2 − 𝜇2 =

=
𝑥1 − 𝜇1 𝑥1 − 𝜇1 𝑥1 − 𝜇1 𝑥2 − 𝜇2
𝑥2 − 𝜇2 𝑥1 − 𝜇1 𝑥2 − 𝜇2 𝑥2 − 𝜇2

=
𝜎1
2 𝑐12

𝑐21 𝜎2
2



7 Error propagation rule
❑ First some background… Imagine the following problem: in order to 

measure a quantity 𝒚 (can be more than one of these) we measure 𝒏
R.V.s 𝒙𝒊:

❑ So, we can define a joint PDF, 𝑓( Ԧ𝑥), but again usually we do not know 

its form but instead we can estimate respective mean values Ԧ𝜇 =
𝜇1, 𝜇2, … , 𝜇𝑛 and covariance matrix 𝑐𝑖𝑗

❑ Ok, back to our 𝑦 Ԧ𝑥 . In principle we could follow the whole procedure 

of the variable change, but we can also just live with estimating the 

mean 𝑬 𝒚 and variance 𝑽 𝒚 .

❑ The technique to be applied relies on using Taylor series expansion 

about the mean values of Ԧ𝑥 (like asking what are the typical 𝑦 value 

for typical 𝑥𝑖?)

Ԧ𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛

𝑦 Ԧ𝑥 =
𝑘/0

𝑘/∞
𝑦(𝑘) Ԧ𝑥= Ԧ𝑐

𝑘!
Ԧ𝑥− Ԧ𝑐 𝑘

𝑦 Ԧ𝑥 = 𝑦 Ԧ𝜇 +
𝜕𝑦

𝜕𝑥1 𝑥1=𝜇1

𝑥1 − 𝜇1 +⋯+
𝜕𝑦

𝜕𝑥𝑛 𝑥𝑛=𝜇𝑛

𝑥𝑛 − 𝜇𝑛 +⋯



8 Error propagation rule

❑ We stop the expansion after the first element

❑ In principle we could expand it about any point, but we use 

the fact that 𝐸 𝑥𝑙 − 𝜇𝑙 = 0 (sneaky!), 𝑬[𝒚] ≈ 𝒚 𝝁

❑ 𝜎𝑦
2 = 𝐸 𝑦2 − 𝐸2 𝑦 , so… we just need to know the first term

𝑦 Ԧ𝑥 ≈ 𝑦 Ԧ𝜇 +
𝑙/1

𝑙/𝑛 𝜕𝑦

𝜕𝑥𝑙 𝑥𝑙=𝜇𝑙

𝑥𝑙 − 𝜇𝑙

𝐸 𝑦2 Ԧ𝑥 ≈ 𝑦2 Ԧ𝜇 + 2𝑦 Ԧ𝜇 ∙
𝑙/1

𝑙/𝑛 𝜕𝑦

𝜕𝑥𝑙 𝑥𝑙=𝜇𝑙

𝐸[ 𝑥𝑙 − 𝜇𝑙 ] +

+𝐸 
𝑙/1

𝑙/𝑛 𝜕𝑦

𝜕𝑥𝑙 𝑥𝑙=𝜇𝑙

𝑥𝑙 − 𝜇𝑙 
𝑗/1

𝑗/𝑛 𝜕𝑦

𝜕𝑥𝑗 𝑥𝑗=𝜇𝑗

𝑥𝑗 − 𝜇𝑗


𝑙,𝑗/1

𝑙,𝑗/𝑛 𝜕𝑦

𝜕𝑥𝑙

𝜕𝑦

𝜕𝑥𝑗 Ԧ𝑥=𝜇

𝐸 𝑥𝑙 − 𝜇𝑙 𝑥𝑗 − 𝜇𝑗



9 Error propagation rule

❑ Finally, we get

❑ And beyond… We can have many composite variables that 

depend on what we measure: Ԧ𝑦 = 𝑦1 Ԧ𝑥 , 𝑦2 Ԧ𝑥 , … , 𝑦𝑚 Ԧ𝑥 , so 

we can get a covariance matrix for all 𝒚s:

𝐸 𝑦2 Ԧ𝑥 ≈ 𝑦2 Ԧ𝜇 +
𝑙,𝑗/1

𝑙,𝑗/𝑛 𝜕𝑦

𝜕𝑥𝑙

𝜕𝑦

𝜕𝑥𝑗 Ԧ𝑥=𝜇

𝑐𝑙𝑗

𝜎𝑦
2 ≈

𝑙,𝑗/1

𝑙,𝑗/𝑛 𝜕𝑦

𝜕𝑥𝑙

𝜕𝑦

𝜕𝑥𝑗 Ԧ𝑥=𝜇

𝑐𝑙𝑗

𝑢𝑘𝑙 ≈
𝑖,𝑗/1

𝑖,𝑗/𝑛 𝜕𝑦𝑘
𝜕𝑥𝑖

𝜕𝑦𝑙
𝜕𝑥𝑗 Ԧ𝑥=𝜇

𝑐𝑖𝑗



10 Error propagation rule

❑ And an elegant matrix form

❑ Very often we deal with 𝒏 measurements – which can be 

treated as independent R.V. (I.R.V.), the consequence is that 

all terms off the diagonal in the covariance matrix are 0, or we 

have some function that depend on 𝒏 I.R.V. (𝑐𝑖𝑖 = 𝜎𝑖
2, 𝑐𝑖𝑗 = 0)

𝒰 = 𝒯𝒞𝒯𝑇 𝓉𝑖𝑗 =
𝜕𝑦𝑖
𝜕𝑥𝑗 Ԧ𝑥=𝜇

𝜎𝑦
2 ≈

𝑗/1

𝑗/𝑛 𝜕𝑦

𝜕𝑥𝑗 Ԧ𝑥=𝜇

2

𝜎𝑗
2

𝑢𝑘𝑙 ≈
𝑗/1

𝑗/𝑛 𝜕𝑦𝑘
𝜕𝑥𝑗

𝜕𝑦𝑙
𝜕𝑥𝑗 Ԧ𝑥=𝜇

𝜎𝑗
2



11 Using the rule

❑ Let’s assume a very simple example: 𝑦 Ԧ𝑥 = 𝑥1 + 𝑥2 and 𝑦 Ԧ𝑥 =
𝑥1 ∙ 𝑥2, by applying the rule directly we have:

❑ The covariance is sensitive to addition/subtraction if RV are not 

independent!

❑ So, we have a very nice tool to handle our data which will 

help us to calculate uncertainties. If the form of the 

transformations or the functions are not well approximated by 

linear formulas then our assumptions break and we should use 

the confidence interval instead (see future lectures!)

𝜎𝑦+
2 =

𝑙,𝑗/1

𝑙,𝑗/𝑛 𝜕𝑦

𝜕𝑥𝑙

𝜕𝑦

𝜕𝑥𝑗 Ԧ𝑥=𝜇

𝑐𝑙𝑗 = 𝜎1
2 + 𝜎2

2 + 𝟐𝒄𝟏𝟐

𝜎𝑦∙
2 = 𝑦2

𝜎1
2

𝑥1
2 +

𝜎2
2

𝑥2
2 +

𝟐𝒄𝟏𝟐
𝑥1𝑥2



12 Something for ML Enthusiasts

❑ We saw, that when propagated errors the crucial role is played by the 

transformations (functions)

❑ One simple linear transformation is rotation in 2d space which is very 

popular in data analysis, computer vision etc.

❑ Formally we call it an orthogonal transformation

❑ When using ML to solve problems we find that we are having way too 

many variables – it would be useful to reduce them!

❑ One way to do that is decorrelation! This, as we see can be interpreted 
as just rotation.

❑ The task: we have 𝑛 RVs 𝑥1, 𝑥2, … , 𝑥𝑛 and the covariance matrix has 

off-diagonal elements that are not all equal 0, we want to find a new 
set of RVs 𝑦1, 𝑦2, … , 𝑦𝑛 for which 𝑢𝑖𝑗 = 0

❑ We postulate it is always possible with a linear transformation like this

𝑦𝑖 =
𝑗/1

𝑗/𝑛

𝓉𝑖𝑗𝑥𝑗



13 Something for ML Enthusiasts

❑ Let’s calculate the covariances for 𝑦s

❑ Ok guys… we are back at the error propagation formula!

❑ Our task then is to find a matrix 𝒯 to make 𝒰 = 𝒯𝒞𝒯𝑇 diagonal

❑ Very well known problem: first we need to find the e-vectors Ԧ𝜆(𝑖), 𝑖 =
1,2, … , 𝑛 of the covariance matrix 𝒞

❑ In this procedure the e-vectors are determined up to a multiplicative 

factor, which can be set by requiring all Ԧ𝜆(𝑖) should have unit length

𝑢𝑖𝑗 = 𝑐𝑜𝑣 𝑦𝑖 , 𝑦𝑗 = 𝑐𝑜𝑣 
𝑙/1

𝑙/𝑛

𝓉𝒊𝒍𝑥𝑙 ,
𝑘/1

𝑘/𝑛

𝓉𝒋𝒌𝑥𝑘 =

=
𝑙,𝑘/1

𝑙,𝑘/𝑛

𝓉𝑖𝑙𝓉𝑗𝑘𝑐𝑜𝑣 𝑥𝑙 , 𝑥𝑘 =
𝑙,𝑘/1

𝑙,𝑘/𝑛

𝓉𝑖𝑙𝑐𝑙𝑘𝓽𝒌𝒋
𝑻

𝒞 Ԧ𝜆(𝑖) = 𝜆𝑖 Ԧ𝜆
(𝑖)



14 Something for ML Enthusiasts

❑ When a matrix is symmetric the e-vecs are always orthogonal

❑ This is always true for the covariance matrix! So, we have

❑ We can proceed as follow: rows of the 𝒯(= 𝜆𝑗
𝑖) matrix are the 

e-vectors, and the columns of 𝒯𝑇(= 𝜆𝑖
𝑗
) are the e-vectors, then

❑ Variances of new RVs are expressed as e-values of the original 

covariance matrix 𝒞 and 𝒯𝒯𝑇 = 1, thus, 𝒯𝑇 = 𝒯−1

Ԧ𝜆(𝑖) ∙ Ԧ𝜆 𝑗 =
𝑘/1

𝑘/𝑛

𝜆𝑘
𝑖 𝜆𝑘

𝑗
= 𝛿𝑖𝑗

𝑢𝑖𝑗 =
𝑙,𝑘/1

𝑙,𝑘/𝑛

𝓉𝑖𝑙𝑐𝑙𝑘𝓉𝑘𝑗
𝑇 =

𝑙,𝑘/1

𝑙,𝑘/𝑛

𝜆𝑖
𝑙𝒄𝒍𝒌𝜆𝑗

𝑘 =
𝑙/1

𝑙/𝑛

𝜆𝑖
𝑙𝝀𝒋𝜆𝑗

𝑙 = 𝜆𝑗 Ԧ𝜆
(𝑖) ∙ Ԧ𝜆 𝑗

𝑢𝑖𝑗 = 𝜆𝑗𝛿𝑖𝑗



15 Something for ML Enthusiasts

❑ For two dimensions this is a simple calculation, for more we just 

use computer programs. In the case of 2d it can be shown:

𝒞 =
𝜎1
2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎1
2

Ԧ𝜆(1) =
𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

Ԧ𝜆(2) =
−𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

𝜃 =
1

2
𝑡𝑔−1

2𝜌𝜎1𝜎2

𝜎1
2 − 𝜎2

2



16 Something for ML Enthusiasts

𝑥(𝑖) = 𝑥1
(𝑖)
, … , 𝑥𝑛

(𝑖)
- one instance 𝑥𝑗 =

𝑥𝑗
(1)

.

.

.

𝑥𝑗
(𝑚)



17 Something for ML Enthusiasts
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