1. A student takes a ten-question true/false exam.
a) Find the probability that the student gets exactly six of the questions right simply by guessing the answer on every question.
b) Find the probability that the student will obtain a passing grade of 60% or greater simply by guessing.
2. If every newborn baby has an equal chance of being a boy or a girl, find the probability that among 1000 newborns there is a maximum of 490 girls. Calculate it also for 10 babies and 4 girls.
3. The lifetimes of the tread of a certain automobile tire are normally distributed with mean 37,500 km and standard deviation $4,500 \mathrm{~km}$. Find the probability that the tread life of a randomly selected tire will be between 30,000 and $40,000 \mathrm{~km}$.
4. Scores on a standardized college entrance examination (CEE) are normally distributed with mean 510 and standard deviation 60 . A selective university considers for admission only applicants with $C E E$ scores over 650 . Find percentage of all individuals who took the $C E E$ who meet the university's $C E E$ requirement for consideration for admission.
5. Find $z_{0.1}$ and $-z_{0.1} 01$, the values of Z that cut off right and left tails of area 0.01 in the standard normal distribution.
6. Find x^{*} such that $P\left(X<x^{*}\right)=0.9332$, where X is a normal random variable with mean 10 and standard deviation 2.5.
7. All boys at a military school must run a fixed course as fast as they can as part of a physical examination. Finishing times are normally distributed with mean 29 minutes and standard deviation 2 minutes. The middle 75% of all finishing times are classified as "average." Find the range of times that are average finishing times by this definition.
8. The final exam scores in a statistics class were normally distributed with a mean of 63 and a standard deviation of five.
a) Find the probability that a randomly selected student scored more than 65 on the exam.
b) Find the probability that a randomly selected student scored less than 8.)
c) Find the $90^{\text {th }}$ percentile (that is, find the score k that has 90% of the scores below k and 10% of the scores above k).
d) Find the $70^{\text {th }}$ percentile (that is, find the score k such that 70% of scores are below k and 30% of the scores are above k).
