AGH UST ESA LAB 1

statgraphics 18
 First steps in data handling

Normal distribution

1. Plot the normal probability distribution:
a) From the main menu choose Plot/Probability distribution: Normal,

b) Input Mean and Std. Dev, choose a few values,
c) Choose items from Tables and Graphs window and click OK:

Tables and Graphs		
TABLES	GRAPHS	OK
V Analysis Summary	- Density/Mass Function	
V Cumulative Distribution	$\checkmark \mathrm{CDF}$	Cancel
V Inverse CDF	Γ Survivor Function	All
\ulcorner Random Numbers	Γ Log Survivor Function	Store
	Γ Hazard Function	Help

d) Analyse the results:

The StatAdrisor
This procedure allows you to analyze any of 46 probability distributions. Currently, the Normal distribution has been selected. You , create various plots, compute tail areas and critical values, and generate random numbers from the selected distribution. Up to five sets parameters can be specified by pressing the alternate mouse button and selecting Analysis Options.

Cumulative Distribution Distribution: Normal								
Lower Tail Area (<)								
Variable	Dist. 1	Dist. 2	Dist 3		Dist. 4		Dist 5	
0	0,5	0,000031686		,725748		08536		
Probability Density								
Variable	Dist. 1	Dist 2		Dist 3		Dist. 4		Dist 5
0	0,398942	0,00026766		0,0666449		0,352065		
Upper Tail Area ($>$)								
Variable	Dist. 1	Dist. 2	Dist 3		Dist 4		t 5	
0	0,5	0,999968	0,274252		0,691464			

 Inverse CDF
Distribution: Norma

CDF	Dist 1	Dist 2	Dist. 3	Dist. 4	Dist. 5
0,01	$-2,326352178$	0,8368239111	$-14,63176089$	$-1,826352178$	
0,1	$-1,281554359$	1,359222821	$-9,407771795$	$-0,781554359$	
0,5	0	2	$-3,0$	0,5	
0,9	1,281554359	2,640777179	3,077771795	1,781554359	
0,99	2,326352178	3,163176089	8,631760889	2,826352178	

The StatAdriso

This pane finds critical values for the Normal. You may specify up to 5 five tail areas. The critical value is defined as the largest value Normal such that the probability of not exceeding that value does not exceed the area specified. For example, the output indicates that, first distribution specified, $-2,32635$ is the largest value such that the probability of not exceeding $-2,32635$ is less than or equal to 0,01

2. Using Statgraphics solve the problem:

The final exam scores in a statistics class were normally distributed with a mean of 63 and a standard deviation of five.
a) Find the probability that a randomly selected student scored more than 65 on the exam.
b) Find the probability that a randomly selected student scored less than 85 .
c) Find the 90th percentile (that is, find the score k that has 90% of the scores below k and 10% of the scores above k).
d) Find the 70th percentile (that is, find the score k such that 70% of scores are below k and 30% of the scores are above k).

Copy or write down your results. Show them to the teacher.
Hint: use Inverse CDF Table. Right-click on the table and chose Pane option. Write appropriate values (be sure you what you are doing) into the window "Inverse CDF Option".
3. Transform the normal distribution from the previous problem into the standard normal distribution $N(0,1)$ and answer the same question. Compare the results.

Hint: calculate the parameters of a standardised variable (from a known formula). Plot two normal distribution functions for two random variables. Then analyse both distributions in the same table.

3. Generation of data (histograms) with a normal distribution

a) From DataBook click on Col_1 and chose Generate Data. Scroll down Operators window to see RNORMAL(?;?;?). Doble click on it, replace the "?" with: numbers of points to generate, mean, standard deviation. Press $\mathbf{O K}$. You will have numbers in Col_1.

b) From the main menu: Describe->Numerical Data->One-Variable Analysis, highlight Col_1, and press $>$, tick options from Tables and Graphs window

c) Analyse the results.
d) You can change the binning of histogram: right-click on the plot, chose Pane option, change value in Frequency Plot Options. Note the difference in Frequency Tabulation window when choosing lower or higher Number of Classes
4. Fit your data (histogram) with a normal distribution
a) From the main menu: Describe->Distribution Fitting->Fitting Uncensored Data
b) From Distribution Fitting Option window tick Normal.
c) Analyse the results.

Introduction to Probability, Statistics and
 Data Handling

AGH UST ESA LAB 2a

. . statgraphics 18

Everything (almost) is normal

I. Binomial distribution can be approximated by the normal distribution with mean $\mu=n p$ and standard deviation $\sigma=\sqrt{n p q}$.

A multiple-choice test has 15 questions, each of which has: i) five choices, ii) two choices. An unprepared student taking the test answers each of the questions completely randomly by choosing an arbitrary answer. Suppose X denotes the number of answers that the student gets right. The student passes the exam if the number of correct answers is at least 8 . Calculate the probability of his/her success.

Solve the above problem using:
a) Binomial distribution;
b) Normal distribution.
a) From the main menu choose Plot/Probability distribution: Binomial, input parameters for both options: i) five choices, ii) two choices.
b) Calculate the probability from the Cumulative Distribution Panel:

$\|$Cumulative Distribution Distribution: Binomial
Lower Tail Area ($<$)
Variable Dist. 1 1 0,0351844 7 0,981941 8 0,995761 9 0,999215 Probability Mass $(=)$ Variable Dist. 1 1 0,131941 7 0,0138191 8 0,00345476 9 0,00067176

Upper Tail Area ($>$) Variable	Dist. 1
1	0,832874
7	0,00423949
8	0,000784728
9	0,000112968

c') Copy the plot Binomial Distribution to StatGallery:
c) Plot the normal distribution with mean $\mu=n p$ and standard deviation $\sigma=\sqrt{n p q}$.

Copy plots to StatGallery with Overlay option.
Compare and comment the results. Is the approximation correct?
In order to get the best approximation, add 0.5 to x or subtract 0.5 from x (use $\mathrm{x}+0.5$ or $\mathrm{x}-0.5$). The number 0.5 is called the continuity correction factor.
II. The Poisson probability distribution gives the probability of a number of events occurring in a fixed interval of time or space if these events happen with a known average rate and independently of the time since the last event (number of failures, guests at the hotel, fish caught, etc). The Poisson distribution is given by the function: $\boldsymbol{f}(\boldsymbol{n} ; \boldsymbol{v}=\boldsymbol{n} \cdot \boldsymbol{p})=\frac{\boldsymbol{v}^{\boldsymbol{n}}}{\boldsymbol{n !}} \boldsymbol{e}^{-\boldsymbol{v}} ; n$ stands for the number of occurrence, v is a mean value,

Plot a few Poisson distributions with $\boldsymbol{v}=\{1,2,5,10\}$ and compare the shapes :
a) in the limit of large n and very small p (rare events) binomial distribution becomes Poisson distribution,
b) if n is large then it can treated as a continuous RV following the normal distribution.

III. t-Student distribution.
a) Plot t-Student distributions for $\boldsymbol{n}=\{1,3,5,10,30\}$ on the same plot. Scale the x-axis to $(-5,5)$ with step 2 (right click axis on the plot and adjust Graphics Options).

Copy plot to StatGallery (see the description to task I).
b) Plot a $\mathcal{N}(0,1)$ distribution and enlarge the line Thickness. Scale x-axis as for Student distribution. Copy it to StatGalery overlying on Student distribution and compare.

