
1.1. Weak Interaction in the Standard Model 

The Standard Model (SM) is a quantum field theory (QFT) that describes the spin-1/2 particles (fermions – leptons 

and quarks), interactions between them via spin-0 bosons exchange (photon, gluons, 𝑊± and 𝑍0) and spin-1 Higgs 

boson responsible for the generation of particles’ mass. In QFT physical particles are interpreted as excitation of 

underlying fields. 

The mathematical structure of the SM symmetry is described by the product of the gauge groups 

𝑆𝑈(3) × 𝑆𝑈(2) × 𝑈(1). The first term pertains to the symmetry of strong interaction, the two following represent 

the electromagnetic and weak interactions. The number of intermediate bosons corresponds to the number of 

respective group generators (eight in 𝑆𝑈(3) - gluons, in 𝑆𝑈(2) – three weak bosons, and one in 𝑈(1) - photon). 

Due to gauge invariance symmetry of the Lagrangian, the bosons are massless particles what is hard to reconcile 

with current experiments. In addition, after the discovery of the massive weak bosons, it was also observed that 

𝑊± violate parity, only interacting with left-handed particles, whereas the 𝑍0 boson interacts with both right and 

left-handed particles. These experimental evidences showed that the description of weak interaction and the change 

of quarks’ flavour must internally include breaking of the parity symmetry and explain the mass of weak bosons. 

In general, the Lagrangian might be decomposed into term describing separately free-particle ℒ𝑓 and 

interactions ℒ𝐼, in the simplest way denoted as: 

ℒ = ℒ𝑓 + ℒ𝐼 . (5.1) 

These two terms must be written in such a way that the Lagrangian is gauge invariant and describe the observed, 

physical states. 

The free fermion of mass 𝑚 is described by the Dirac Lagrangian: 

ℒ𝐷 = �̅�(𝑖𝛾
𝜇𝜕𝜇 −𝑚)𝜓. (5.2) 

Here 𝜓 is a Dirac spinor that describes a fermion, and 𝛾𝜇 are the Dirac matrices. The Euler–Lagrange equation for 

Dirac Lagrangian is denoted as the Dirac equation: 

(𝑖𝛾𝜇𝜕𝜇 −𝑚)𝜓 = 0 (5.3) 

which has four solutions describing the spin-half particles and antiparticles (this interpretation is called Dirac 

representation).  

Following the experimental evidences, the charged currents (CC) of weak interaction distinguish between the 

left- and right-handed chiral components of the Dirac spinors, 𝜓𝐿,𝑅 =
1

2
(1 ∓ 𝛾5)𝜓, thus the Eq. 5.2 can be 

rewritten as (in so-called chiral representation):  

ℒ𝑐ℎ = �̅�𝑅𝑖𝛾
𝜇𝜕𝜇𝜓𝑅 + �̅�𝐿𝑖𝛾

𝜇𝜕𝜇𝜓𝐿 −𝑚[�̅�𝑅𝜓𝐿 + �̅�𝐿𝜓𝑅], (5.4) 

what shows that the kinetic part does not mix the left- and right- components of the spinor (the left- and right- 

components interact independently), while the mass term involves couplings of the left- and right-handed 

components. It is obvious that the Lagrangian of the form as in Eq. (5.4) is not gauge invariant.  

The weakly interacting particles are grouped into multiplets; the left-handed SU(2) isospin doublets of leptons 
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and the right-handed chiral charged weak fermion iso-singlets (index 𝑖 = 1,2,3 stands for three quarks and 

leptons generation, 𝑈𝑅
𝑖  and 𝐷𝑅

𝑖  denote the “up” and “down” from 𝑖-th family quarks respectively, 𝐿𝑅
𝑖  describes 

three generations of right chiral leptons) : 

𝑈𝑅
𝑖 = (𝑢 𝑐 𝑡)𝑅,  𝐷𝑅

𝑖 = (𝑑 𝑠 𝑏)𝑅,   𝐿𝑅
𝑖 = (𝑒 𝜇 𝜏)𝑅. 

In this approach, the neutrinos are taken to be massless, therefore left-handed, so (in agreement with the 

observation) there are no right-handed neutrino singlets. 

The electroweak Lagrangian for leptons is given by: 
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where the covariant derivate 𝐷𝜇 is introduced: 𝐷𝜇 ≡ 𝑖𝜕𝜇 −
𝑔

2
𝜏 ∙ �⃗⃗⃗� 𝜇 −

𝑔′

2
𝑌𝐵𝜇 . Here 𝜏  are the Pauli matrices, 𝑔 and 

𝑔’ are coupling strength to the �⃗⃗⃗� 𝜇 and 𝐵𝜇 fields (which are massless bosons in gauge theory), 𝑌 is the weak 

hypercharge. The Eq. 5.5 shows that the left-handed fermions interact with both the �⃗⃗⃗� 𝜇 and 𝐵𝜇 fields, whereas the 

right-handed fermions only with 𝐵𝜇 field, so that the 
𝑔

2
𝜏 ∙ �⃗⃗⃗� 𝜇 is zero for the right-handed components1.  

In the Standard Model, the fields 𝐵𝜇 and �⃗⃗⃗� 𝜇 = (𝑊1,𝑊2,𝑊3) are attributed to the massless photon and the 

massive 𝑊± and 𝑍0 bosons respectively. In order to make the massless fields in the Eq. 5.5 physical and to regain 

gauge invariance in the Lagrangian, an additional doublet of scalar fields, called Higgs field, is added: 𝜙 = (
𝜙+

𝜙0
). 

The Higgs field is added to the Lagrangian in the form of: 

ℒ𝐻𝑖𝑔𝑔𝑠 = (𝐷𝜇𝜙)
†
(𝐷𝜇𝜙) − 𝑉(𝜙) + ℒ𝑌,  (5.6) 

where the potential 𝑉(𝜙) = 𝜇2𝜙†𝜙 −
𝜆

4
(𝜙†𝜙)4, 𝜇 and 𝜆 are constants, and ℒ𝑌 is a Yukawa interaction term. If 

𝜇2 < 0, the value of minimal |𝜙| (referred as the vacuum expectation value 𝜐) is non-zero and the symmetry is 

spontaneously broken. This gives rise to the mass of fields 𝐵𝜇 and �⃗⃗⃗� 𝜇 which gain physical properties in that way 

Błąd! Nie można odnaleźć źródła odwołania. . 

By adding the Yukawa term of the form of ℒ𝑌 = −𝑔�̅�𝐿𝜙𝜓𝑅 + ℎ. 𝑐., the Higgs field give mass also to the 

fermions (ℎ. 𝑐. stands for hermitian conjugate): 
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+ ℎ. 𝑐. (5.7) 

The matrices 𝑌𝑖𝑗
𝑑 , 𝑌𝑖𝑗

𝑢 , 𝑌𝑖𝑗
𝑙  are complex matrices that represent the couplings between different families 

(generations) 𝑖𝑗 of quarks 𝑢𝑝-type, 𝑑own-type and leptons 𝑙. The Yukawa part of the Lagrangian is invariant under 

the CP symmetry if 𝑌𝑖𝑗 = 𝑌𝑖𝑗
∗ . 

 After spontaneous symmetry breaking the mass terms for fermions are proportional to the 𝑌𝑖𝑗
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The matrices 𝑀𝑖𝑗
𝑑,𝑢,𝑙

 can have off-diagonal elements, allowing the mixing between quark and lepton families, 

𝑑 and 𝑢 represent the down and up families of quark (𝑑, 𝑠, 𝑏) and (𝑢, 𝑐, 𝑡) respectively, whereas 𝑙 stands for lepton 

families Błąd! Nie można odnaleźć źródła odwołania. . 

In order to diagonalize the quark mass matrices one can define a unitary transformation 𝑉:  

𝑀𝑑𝑖𝑎𝑔
𝑑 = 𝑉𝑑𝐿𝑀

𝑑𝑉𝑑𝑅
†   

𝑀𝑑𝑖𝑎𝑔
𝑢 = 𝑉𝑢𝐿𝑀

𝑢𝑉𝑢𝑅
† .  

 

This allows to introduce the Cabbibo-Kobayashi-Maskawa (CKM) matrix Błąd! Nie można odnaleźć 

źródła odwołania.: 

𝑉𝐶𝐾𝑀 = (𝑉𝑢𝐿𝑉𝑑𝐿
† )

𝑖𝑗
.  (5.8) 

By convention the weak (interaction) and mass eigenstates or the quarks are chosen such that they are equal 

for up-type quarks, while the down-type quarks are rotated using the CKM matrix: 

(
𝑑′
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), (5.9) 

where each element 𝑉𝑖𝑗 expresses the coupling strength of the weak interaction between the quarks 𝑖 and 𝑗 and 

transforms (rotate) the quarks from the physical mass (flavour) eigenstates (𝑑, 𝑠, 𝑏) into weak eigenstates 

(𝑑′, 𝑠′, 𝑏′). 

In terms of the mass eigenstates (𝑢, 𝑐, 𝑡) and (𝑑, 𝑠, 𝑏) the Lagrangian takes the form: 
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1 The effect of �⃗⃗⃗� 𝜇 on fermion fields is to change between the lower and upper components of the doublets, 

so is effectively zero for right-handed spinor. It means that the weak interaction maximally violates P parity. 



To summarise: the simple shape of the Lagrangian of weak interactions in Eq. 5.1 must have been rewritten 

in order to describe the physical, observed states and to maintain the gauge invariance. After the spontaneous 

symmetry breaking it gains the form that describes separately the fermion field ℒ𝑓, Higgs field ℒ𝐻 and gauge 

bosons fields ℒ𝐺: 

ℒ𝐸𝑊 = ℒ𝑓 + ℒ𝐻 + ℒ𝐺 . (5.11) 

The fermion component pertains to the mixed states of quarks and contains the terms for free particle and 

interaction between fermions and Higgs field proportional to the fermions’ mass, interactions through charge 

currents with 𝑊± exchange and neutral currents with 𝑍0 and the electromagnetic interaction with 𝛾 exchange. The 

Higgs term generates the mass of the bosons 𝑊± and 𝑍0, which enter the Lagrangian as massless gauge bosons in 

the last term of Eq. 5.11. 

The QFT of the SM, after the spontaneous symmetry breaking, is described by the product of the gauge groups 

𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌. The first term pertains to the colour (C) symmetry of strong interaction, the two 

following represent the electroweak theory: the interaction of left chiral states by the weak charge currents and 

neutral currents that contains the interaction with mixed 𝑍0 and 𝛾 fields. The mathematical structure of the 

Lagrangian given by the Eq. 5.11 internally includes the possibility of CP symmetry violation – thanks to the 

different mass of quarks and quark mixing and because of the irreducible complex phases in 𝑉𝐶𝐾𝑀. The Lagrangian 

for the weak interaction features 17 independent parameters that must be determined experimentally. 

1.2. CP Violation in the Standard Model 

The two terms in the square brackets in Eq. (5.10) transform into each other under CP symmetry, 𝑉𝐶𝐾𝑀 is the 

unitary Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix containing the strength of the flavour-changing weak 

decays in three quark generations. As the CKM matrix is a 3 × 3 complex matrix there are in general 18 free 

parameters. The unitarity conditions 𝑉𝐶𝐾𝑀
†  𝑉𝐶𝐾𝑀 =  𝑉𝐶𝐾𝑀  𝑉𝐶𝐾𝑀

† = 𝕀 reduce this to nine. Each quark field can also 

be multiplied by a phase factor with no change in the Lagrangian. This reduces the CKM matrix to have four non-

reducible parameters, which are three magnitudes of quark transition and a single phase (this parametrisation is 

regarded as standard parametrisation).  

Another practical and commonly used parametrisation of the CKM matrix is the Wolfenstein parametrisation 

Błąd! Nie można odnaleźć źródła odwołania. . It clearly reveals the hierarchy (relative strength) of the quark 

transitions since each element is proportional to the parameter 𝜆 = sin 𝜃𝐶 ≈ 0.22: 

𝑉𝐶𝐾𝑀 =
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+ℴ(𝜆7), 

(5.12) 

where 𝐴, 𝜌, 𝜂, sin 𝜃𝐶 are real parameters2, sin 𝜃𝐶  being the Cabbibo mixing angle for two quark generations. The 

𝜂 parameter was introduced to account for CP violation in the SM. The above representation contains the terms 

proportional to 𝜆6, which are necesairly to study the 𝐵𝑆
0 − �̅�𝑠

0 mixing and can be studied thanks to the current 

precision of the LHCb measurements. 

If CP symmetry was conserved, the CKM matrix would fulfil the condition: 𝑉𝐶𝐾𝑀 = 𝑉𝐶𝐾𝑀
∗  and all elements 

would be real. Therefore, the non-zero imaginary part of the 𝑉𝐶𝐾𝑀 elements is necessary to describe CP violation 

in the SM. The existence of three quark generations was predicted by Kabayashi and Maskawa as an explanation 

of CP violation in weak quark transitions. For two quark families, there are no phase terms in the quark mixing 

matrix and no complex Yukawa couplings.  

In the SM the magnitude of CP violation is determined by the Jarlskog parameter 𝐽𝐶𝑃, defined as the 

imaginary part of the products of the CKM matrix elements, directly related to the 𝜂 parameter Błąd! Nie można 

odnaleźć źródła odwołania.: 

                                                           
2 The current values for CKM parameters are: 𝐴 = 0.814−0.022

+0.021, 𝜌 = 0.135−0.016
+0.031, 𝜂 = 0.349−0.017

+0.015 , 𝜆 =
0.2257−0.0010

+0.0009 Błąd! Nie można odnaleźć źródła odwołania. . 



𝐽𝐶𝑃 = |ℑ(𝑉𝑖𝛼𝑉𝑗𝛽𝑉𝑖𝛽
∗ 𝑉𝑗𝛼

∗ )| = 𝜆6𝐴2𝜂 (1 −
𝜆2

2
) + ℴ(𝜆10)~10−5, (5.13) 

what shows that CP symmetry is violated if 𝐽𝐶𝑃 ≠ 0 and the violation effects are small in the SM. Therefore, the 

matter dominance over antimatter in current Universe is hardly explained by the CP violation exclusively in 

electroweak decays what enhance the quest for new sources of CP violation that could come from the physics 

Beyond the SM (BSM). 

The CKM matrix is unitary so we can formulate 12 orthogonality conditions for the complex elements: 
∑ 𝑉𝑘𝑖𝑉𝑘𝑗

∗
𝑘 = 𝛿𝑖𝑗. Since the complex numbers can be represented by vectors, six independent equations form the 

triangles in a complex plane, all having the same area 
𝐽𝐶𝑃

2
. In case CP was conserved, the triangles would be flat. 

All but two triangles are very different in shape. These two, because of comparable lengths of their respective 

sides (proportional to 𝜆3), can be studied experimentally. They are obtained by multiplying the first and the third 

column of the CKM matrix and the first and the third row. These conditions involve the up and beauty quarks so 

pertain to the 𝐵0 system: 

The third condition refers to the 𝐵𝑠
0 meson system: 

These conditions are represented by so-called unitary triangles. When the condition in Eq. 5.14a is divided by the 

factor 𝑉𝑐𝑑𝑉𝑐𝑏
∗  , it gives the relationship: 

 

and is called as the Unitary Triangle (UT), schematically drawn in Fig. 5.1a. The apex of the UT is denoted as: 

(�̅�, �̅�) ≡ [𝜌 (1 −
1

2
𝜆2) , 𝜂 (1 −

1

2
𝜆2)], while the other UT apexes are (0,0) and (1,0). Three internal angles, known 

as weak phases are defined that way as: 

𝛼 = arg (−
𝑉𝑡𝑑𝑉𝑡𝑏

∗

𝑉𝑢𝑑𝑉𝑢𝑏
∗ ) , 𝛽 = arg (−
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∗
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∗ ) , 𝛾 = arg (−

𝑉𝑢𝑑𝑉𝑢𝑏
∗

𝑉𝑐𝑑𝑉𝑐𝑏
∗ ). (5.17) 

When the Eq. 5.14b is rescaled by 𝑉𝑢𝑠𝑉𝑐𝑏
∗ , the second nonsquashed triangle is constructed; its apex is located 

at the point (𝜌, 𝜂) and is tilted with respect to the real axis by a small angle 𝛿𝛾 = arg (−
𝑉𝑡𝑠𝑉𝑡𝑏

∗

𝑉𝑐𝑠𝑉𝑐𝑏
∗ ), see Fig. 5.1b.  

Neutral mesons 𝐵𝑠
0, 𝐷0, 𝐾0 systems are represented by the other squashed triangles with the same area 

𝐽𝐶𝑃

2
. 

Eq. 5.15 refers to the 𝐵𝑠
0 system and defines the CP violating phase 𝛽𝑠: 

which is equivalent to the 𝛿𝛾, so 𝛿𝛾 ≡ 𝛽𝑠. This triangle has lengths of sides that differ by orders of magnitude, so 

one angle, 𝛽𝑠, is supposed to be very small, 𝛽𝑠 ≅ 𝜆
2𝜂. 
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∗ + 𝑉𝑐𝑑𝑉𝑐𝑏

∗ + 𝑉𝑡𝑑𝑉𝑡𝑏
∗ = 0, (5.14a) 

𝑉𝑢𝑑𝑉𝑡𝑑
∗ + 𝑉𝑢𝑠𝑉𝑡𝑠

∗ + 𝑉𝑢𝑏𝑉𝑡𝑏
∗ = 0. (5.14b) 

𝑉𝑢𝑠𝑉𝑢𝑏
∗ + 𝑉𝑐𝑠𝑉𝑐𝑏

∗ + 𝑉𝑡𝑠𝑉𝑡𝑏
∗ = 0. (5.15) 
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∗
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∗ + 1 +

𝑉𝑡𝑑𝑉𝑡𝑏
∗

𝑉𝑐𝑑𝑉𝑐𝑏
∗ = 0 (5.16) 

𝛽𝑠 = arg (−
𝑉𝑡𝑠𝑉𝑡𝑏

∗

𝑉𝑐𝑠𝑉𝑐𝑏
∗ ) , (5.18) 



 There are no predictions of Yukawa couplings from the SM, all CKM elements must be determined 

experimentally. From the experimental point of view, it is practical to express the CKM matrix in the standard 

representation, comprising of respective coupling constants, exposing the parameters to determine: magnitudes of 

amplitudes and weak phases: 

The current constrains imposed on the CKM parameters are shown in Fig. 5.2. The results are combinations 

of many experiments, like 𝐵-factories (Belle, BaBar), CDF and LHC experiments (LHCb, CMS, ATLAS). The 

triangles are constrained by measurement of their sides and angles, overconstraining helps in spotting the tensions 

between the measured parameters. The determination of the CKM matrix parameters is regarded as a fundamental 

test of the unitarity condition, any discrepancy would indicate the phenomena of the physics beyond the Standard 

Model. The precision of the measurements of the CKM parameters has increased more than of order of magnitude 

since the first published result and no clear evidence of physics BSM have been found Błąd! Nie można odnaleźć 

źródła odwołania..  

The brief description of the CKM angle measurements in presented in Table 5.1. The current measurements 

are summarised in the matrix (5.20) Błąd! Nie można odnaleźć źródła odwołania. . 

 

 

𝑉𝐶𝐾𝑀 = (

|𝑉𝑢𝑑| |𝑉𝑢𝑠| |𝑉𝑢𝑏|𝑒
−𝑖𝛾

−|𝑉𝑐𝑑| |𝑉𝑐𝑠| |𝑉𝑐𝑏|

|𝑉𝑡𝑑|𝑒
−𝑖𝛽 −|𝑉𝑡𝑠|𝑒

𝑖𝛽𝑠 |𝑉𝑡𝑏|

) 

 

(5.19) 

Fig. 5.1. a) The Unitary Tringle of the 𝐵0 system from Eq. 5.14a divided by 𝑉𝑐𝑑𝑉𝑐𝑏
∗ . b) The 

second triangle represents Eq. 5.14b divided by 𝑉𝑢𝑠𝑉𝑐𝑏
∗ .  

a) b) 

Fig. 5.2. a) Experimental constraints of The Unitary Triangle in the (�̅�, �̅�) plane. b) Measurements 

of the 𝛽𝑠 phase in the (�̅�𝑠𝑏 , �̅�𝑠𝑏) plane defined as: �̅�𝑠𝑏 + 𝑖�̅�𝑠𝑏 = −
𝑉𝑢𝑠𝑉𝑢𝑏

∗

𝑉𝑐𝑠𝑉𝑐𝑏
∗   Błąd! Nie można 

odnaleźć źródła odwołania.. 

a) b) 



Table 5.1. Selected measurements constraining the CKM matrix Błąd! Nie można odnaleźć źródła odwołania. . 

Phase Value Method of measurement 

𝜶 𝛼 = (84.5−5.2
+5.9)° 

Time-dependent CP asymmetries in 𝐵0+ → ℎℎ. 

Penguin amplitudes need be considered. 

𝜷 
𝑠𝑖𝑛2𝛽 = 0.691 ± 0.017 

𝛽 = (21.9 ± 0.7)° 

Dominated by 𝐵0 decays to charmonium and 𝐾𝑆,𝐿
0  

states. 

𝜸 𝛾 = (73.5−5.1
+4.2)° 

The tree-level-only processes. Comparison with 

indirect (loop) processes shows a tension in results. 

𝜷𝒔 −2𝛽𝑠 = 0.021 ± 0.31 
Time-dependent CP asymmetry in 𝐵𝑠

0 → 𝐽/𝜓 𝜙 

decays. 

 

𝑉𝐶𝐾𝑀 = (
0.97446 ± 0.00010 0.22452 ± 0.00044 0.00365 ± 0.00012
0.22438 ± 0.00044 0.97359 ± 0.00011 0.04214 ± 0.00076
0.00896 ± 0.00024 0.04133 ± 0.00074 0.999105 ± 0.00032

) (5.20) 


