

Oddziaływanie Promieniowania Jonizującego z Materią

Tomasz Szumlak, Agnieszka Obłąkowska-Mucha

WFiIS AGH Kraków

Pomiary jonizacji

Nasze piękne równania opisujące straty jonizacyjne mogą zostać użyte do wyznaczenia średniej liczby par jon-elektron generowanych na drodze cząstki jonizującej

UWAGA – należy zawsze używać sformułowań jak poniżej

Cząstka naładowana deponuje energię (nie ładunek!!)

Deponowanie energii powoduje generację ładunku wzdłuż toru cząstki

- Wyróżniamy tu jonizację pierwotną n_p(liczba pierwotnie wytworzonych par e-jon) oraz wtórną (związaną z elektronami δ) oraz całkowitą N_T(suma obu).
- Średnia energia potrzebna do produkcji par jon-elektron, W jest w zasadzie stała dla danego materiału (zależy b. słabo od parametrów cząstek penetrujących)

W. Adam et al., CMS note 1998/092 (1998)

Pomiary jonizacji

- W praktyce rozpatrujemy dwa typy detektorów, które wykorzystujemy do "pomiarów jonizacji": materiał czynny, w którym dochodzi do jonizacji może być:
 - Gazem
 - Ciałem stałym (solid-state)
- Całkowita jonizacja, N_T, (liczba par nośników, które zostały wygenerowane) wynosi: $N_{Tot} = \frac{\Delta E}{W}$

- Gdzie: ΔE całkowita strata jonizacyjna energii, W średnia energia potrzebna do generacji pary "jon"-elektron (dla gazów ~30 eV dla krzemu (germanu) ~3.6 eV (~2.8 eV)
- Liczba wygenerowanych nośników jest zmienną losową dla detektorów "ss" fluktuacje N_{Tot} są oczywiście znacznie mniejsze!
- Kapitalne znaczenie w przypadku pomiaru energii cząstek

Jonizacja pierwotna

Straty energii:

- głównie na jonizację,
- zależą od $\beta\gamma$,
- typowa strata to ok. 2-3 MeV cm²/g,
- w cieczach i ciałach stałych kilka MeV/cm,
- w gazach kilka keV/cm.
- Jonizacja pierwotna: naładowana cząstka wybija elektron z atomu, również wzbudzenia.

 □ Energia potrzebna do wytworzenia pary elektron – jon W > I
 □ w gazach W ≈ 30 eV, czyli średnio 60 par e-jon/cm (2 MeV/30 eV) – uwaga! Liczba nośników podlega rozkładowi Poissona!

Jonizacja wtórna

 $\Box n_{prim} \approx 20 - 50$ na cm.

Elektrony z jonizacji pierwotnej jonizują dalej gaz, typowo dając 2-3 razy więcej nośników, czyli ok 60-120 elektronów/cm.

120 par elektron-jon wytworzy puls o amplitudzie:

$$V = \frac{ne}{c} = 2 mV$$
, przy $C = 10 pF$.

To jest za mało na detekcję.

Pomysł: powielanie (multiplikacja) nośników w silnym polu elektrycznym: $E \cong 10 \ kV/cm$, potencjał 10 V w pobliżu anody (10 mm)

Jonizacja

Średnia energia potrzebna do produkcji par jon-elektron, W jest w zasadzie stała dla danego materiału (zależy b. słabo od parametrów cząstek penetrujących)

Gas	Density $\rho ~[g/cm^3]$	$I_0 [\mathrm{eV}]$	W [eV]	$n_{\rm p}~[{\rm cm}^{-1}]$	$n_{\rm T} \ [{\rm cm}^{-1}]$
H_2	$8.99 \cdot 10^{-5}$	15.4	37	5.2	9.2
He	$1.78 \cdot 10^{-4}$	24.6	41	5.9	7.8
N_2	$1.25 \cdot 10^{-3}$	15.5	35	10	56
O_2	$1.43 \cdot 10^{-3}$	12.2	31	22	73
Ne	$9.00 \cdot 10^{-4}$	21.6	36	12	39
Ar	$1.78 \cdot 10^{-3}$	15.8	26	29	94
Kr	$3.74 \cdot 10^{-3}$	14.0	24	22	192
Xe	$5.89 \cdot 10^{-3}$	12.1	22	44	307
$\rm CO_2$	$1.98 \cdot 10^{-3}$	13.7	33	34	91
CH_4	$7.17 \cdot 10^{-4}$	13.1	28	16	53
C_4H_{10}	$2.67 \cdot 10^{-3}$	10.8	23	46	195

Fluktuacje

Całkowita jonizacja, N_T, (liczba par nośników, które zostały wygenerowane) wynosi:

$$V_{Tot} = \frac{\Delta E}{W}$$

Gdzie: ΔE – całkowita strata jonizacyjna energii, W – średnia energia potrzebna do generacji pary "jon"-elektron (dla gazów ~30 eV dla krzemu (germanu) ~3.6 eV (~2.8 eV), ŚREDNIO!!!

Zależność jest prawdziwa, gdy cała zdeponowana energia została przekazana na jonizację.

Oznacza to, że dla ciał stałych produkowana liczba nośników jest o rząd wielkości wyższa niż dla gazów (a fluktuacje mniejsze).

- Liczba wygenerowanych nośników jest zmienną losową, w pierwszym przybliżeniu o rozkładzie Poissona.
- □ Zatem fluktuacje wokół wartości średniej powinny być rzędu \sqrt{N} .
- \Box Są jednak mniejsze o czynnik \sqrt{F} (współczynnik Fano).

Pomiary jonizacji

Rozdzielczość pomiaru (dokładność) będzie zależeć od średniej liczby wyprodukowanych par j-e (N)

🖞 Dokładna analiza statystyczna prowadzi do wyrażenia:

$$\sigma^2 = F \cdot \langle N \rangle$$

Absorber	F
$Ar + 10\% CH_4$	≈ 0.2
Si	0.12
Ge	0.13
GaAs	0.10
Diamond	0.08

- Współczynnik Fano, F, zależy od materiału czynnego
- Zwiększa rozdzielczość energii detektora w porównaniu do tej, którą otrzymalibyśmy zakładając jedynie zależność do fluktuacji w produkcji par j-e

Pamiętamy ciągle o zdarzających się bardzo dużych stratach energii, zwłaszcza w cienkich absorberach (p. rozkład Landaua)

Co chcemy zrobić?

- Konstrukcja (rodzaj) detektora zależy bezpośrednio od tego jaką wielkość fizyczną chcemy zmierzyć
 - Y Zwykle jesteśmy zainteresowani:

9

- Detekcją cząstek (wykrycie obecności, np. Geiger-Müller duże ograniczenia związane z brakiem zależności pomiędzy energią zdeponowaną a sygnałem oraz saturacja dla dużych strumieni cząstek związane z czasem martwym)
- Pomiarem energii (np. detektory krzemowe)
- D Pomiarem położenia, trajektorii oraz pędu
- Identyfikacją cząstek
- Intuicyjnie rozumiemy, że wykrycie bądź pomiar energii są "łatwe" i nie wymagają (zwykle) skomplikowanych urządzeń hybrydowych
 - □ To się może zmienić, jeżeli widmo energii jest szerokie,
 - Bądź kompozycja strumienia cząstek jest złożona (fotony, elektrony...)
- Demiary trajektorii, pędu (wektor!) czy rodzaju cząstki są trudne

10 Trochę historii

- Cloud chambers
- Emulsions
- Bubble chambers

nuclear disintegrations in 1937

I bardzo skomplikowane

Bez względu na rodzaj promieniowania oraz aparatury jakiej używamy, zawsze interesować nas będzie (skrót myślowy...):

Detekcja cząstek

lacksquare Estymacja 4-pędu p^{μ}

Identyfikacja (PID – Particle IDentification)

Geometria typu 4π

Eksperymenty FWE

blisko źródła ------> daleko od źródła

- Obserwacja cząstek zawsze jako konsekwencja oddziaływania z materiałem "czynnym" detektora
- Bez względu na typ cząstki i własności oddziaływania na końcu zawsze mamy jonizację!

Eksperymenty FWE

Układy śladowe powinny zawierać jak najmniej materiału (wielokrotne rozproszenia, straty na jonizację)

 Kalorymetry "odwrotnie" powinny zawierać jak
 najwięcej materiału ("katastroficzne" pochłonięcie cząstek)

Eksperymenty (IV)

Eksperymenty FWE

Układy śladowe (I)

- Pømiar pędu jest procesem b. skomplikowanym i wymaga użycia detektorów hybrydowych
 - Odpowiednio skonstruowany detektor, który jest w stanie zmierzyć **pozycję cząstki naładowanej** (na podstawie wygenerowanego w detektorze ładunku) ymożliwia pomiar pędu
 - Cząstka naładowana musi poruszać się w polu magnetycznym

Elektron w polu magnetycznym (1940).

- Energia początkowa: 16.9 MeV, końcowa 12.4 MeV.
- Energia stracona na jonizację: 2.8 MeV.
- Pozostała energia wypromieniowana jako bremsstrahlung

17

Układy śladowe (I)

18

Komora pęcherzykowa

Układy śladowe (2010)

19

Układy śladowe (I)

20

- Do pomiaru pozycji używa się głównie detektorów gazowych oraz półprzewodnikowych (mikro-paskowe lub pikselowe)
 - Zasada detekcji oraz rekonstrukcji położenia praktycznie jednakowa komory jonizacyjne
 - Fizyka oddziaływania inna detektory krzemowe oferują znacznie większą amplitudę generowanego sygnału

Model detektora

Detektor ma za zadanie zbierać ładunek.

Od jego powstania do końca.. czasu zbierania.

- W każdym typie detektora użytecznym parametrem jest całkowita liczba jonów wytworzona przez przechodzące promieniowanie.
- Problem powstanie, gdy jest dużo przechodzących cząstek, sygnały się nałożą.
- Problemem też może być zbyt duży czas martwy.
- A na końcu okaże się, że sygnał był tak niewielki, że nie widać go na tle szumu.

Dzisiaj omówię pokrótce dwa typy detektorów: gazowy i półprzewodnikowy.

i(t) dt = Q

22	2 Detektory go	azowe – licznik alny
	 Przechodząca cząstka (p) jonizuje pierwotna). Jeśli E_δ > E_j następuje jonizacja wto keV cząstki padającej. Jeśli w liczniku jest pole elektryczne 	gaz X: $X + p \rightarrow X^+ + p + \delta_{el}$ (jonizacja órna. Typowo $E_j \sim 30 \ eV$, ok 100 par/3 e, pary dryfują do elektrod lub/i są
	powielane.	Amp Path of ionising particle Boundary of avalanche region Anode wire (+ ve) Discrete avalanches
 Primar Secon 	$\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array}$	

Sygnał

- Sygnał pochodzi głównie z rejonów w pobliżu anody (bo tam jest b.duże pole elektryczne i powstaje lawina)
- Nie ma zatem znaczenia, w którym miejscu ładunek został wytworzony. Liczy się czas dotarcia elektronów i jonów z miejsc w pobliżu anody, a nie czas trwania impulsu pierwotnie wytworzonej pary.
- Dryft elektronów i jonów indukuje sygnał elektryczny. A szybkość (mobilność) jonów jest dwa rzędy wielkości mniejsza niż elektronów i to sygnał od jonów jest znacznie większy.
- W licznikach proporcjonalnych sygnał jest proporcjonalny do liczby zebranego ładunku

 $v_{djon} \approx cm/ms$

 $v_{d_{el}} \approx cm/\mu s$

Wzmocnienia gazowe

Ionization mode:

full charge collection no multiplication; gain ≈ 1

Proportional mode:

multiplication of ionization signal proportional to ionization measurement of dE/dx secondary avalanches need quenching; gain $\approx 10^4 - 10^5$

Limited proportional mode: [saturated, streamer]

strong photoemission requires strong quenchers or pulsed HV; gain $\approx 10^{10}$

Geiger mode:

massive photoemission; full length of the anode wire affected; discharge stopped by HV cut

powielanie jest możliwe, gdy pole elektryczne przekroczy wartość krytyczną, typowo 10⁶ V/m

E. Garutti

Detektory słomkowe

Można też połączyć kilka liczników proporcjonalnych razem:

Lub połączyć katody liczników w płaszczyznę:

Lub nawet usunąć i płaszczyzny....

Komora wielodrutowa (MWPC)

- Elektrony dryfują do najbliższego drutu.
- Powielanie jest tylko w pobliżu anody,

Nobel price (1992)

G. Charpak

Sygnał jest generowany przez elektrony, ale głównie pochodzi z powolnych JONÓW rozdzielczość czasowa ok. 10 ns,

Micro-strip gas chambers (MSGC)

 Zamiast drutówmikrostruktury, poprawiają rezolucję przestrzenną

27

- Powielanie lawinowe w niewielkim obszarze
- GEM-Folie GEM-Folie MSGC-Wafer 300 µm Pitch Anode 10 µm Kathode 170 µm

Problem z niejednorością pola

- GEM (Gas Electron Multiplier):
 - wytrawiane otwory o średnicy 100-200 µm w specjalnej metalizowanej foli.
 - Powielanie lawinowe tylko w pobliżu otworów
 - Dryft elektronów do anody,
 - Sygnał głównie od jonów.

29

Duuże komory dryfowe

pomiar dE/dx umożliwia: wyznaczenie trajektorii cząstki, Identyfikację, Rezolucja: $z, y \sim mm, x \sim 150 - 300 \ \mu m$

Duuże komory dryfowe (ALICE)

30

pomiar dE/dx umożliwia: wyznaczenie trajektorii cząstki, Identyfikację, Rezolucja: z, y ~ mm, x ~ 150 – 300 μm

Detektory / półprzewodnikowe

ATLAS

Strips: 61 m² of silicon, 4088 modules, 6x10⁶ channels

Pixels: 1744 modules, 80 x 10⁶ channels

CMS

the world largest silicon tracker 200 m² of strip sensors (single sided) 11 x 10⁶ readout channels

~1m² of pixel sensors, 60x10⁶ channels

ALICE

Pixel sensors Drift detectors Double sided strip detectors

LHCb VELO: Si Strips

Detektory półprzewodnikowe

32

- Półprzewodniki mają większą gęstość i niższy potencjał jonizacyjny w porównaniu do gazów (kilka eV/eh)
- Nośniki mają wysoką mobilność (szybki detektor)
- German wymaga chłodzenia, używany w fiz. jądrowej.
- Krzem temp. pokojowa, synergia z elektroniką, najczęściej używany detektor śladowy i do wyznaczenia wierzchołków oddziaływań.
- Diament bardzo odporny radiacyjnie, drogi i trudny w produkcji, stosowany do monitorów wiązek.

Detektory krzemowe

- Silicon belongs to IV group with four valence electrons which form a covariant bonding with the neighbour atoms.
- Si atom substituted from III (B) or V (P) group form an additional energy slighly below the conduction band (donors, n-type) and a bit above the valence level (acceptors, p-type).
- At room temperature 99.6% of the donors electrons are ionized, and therefore contribute to conduction. The same happens for holes.
- Once an n-type silicon is put into physical contact with a p-type silicon, the donors diffuse to the p-side and recombine with acceptors on p-side.
- The diffusion of electrons (majority carriers) leaves positive ions on the n-side and causes the excess of negative charge on the p-side. An electrical field builds up what prevents further diffusion.

Detektory krzemowe

Region around the junction is free of charge, so is called the depletion zone.

very n

The reverse bias is applied to broaden the depleted region

 V_{bias}^{-}

Detektory krzemowe

- Sygnał z detektorów krzemowych zależy od szerokości strefy zubożenia.
- □ Średnia strata energii MIP to 3.87 MeV/cm
- Rozkład Landaua i MPV = 0.7 max
- Dla 300 µm sensora, MPV to ok. 23 400 par e/h.
- Szum w detektorach krzemowych zależy od wielu parametrów: geometrii, napięcia, elektroniki odczytu, temperatury.
- Rozdzielczość przestrzenna zależy od geometrii detektora i jest rzędu kilkudziesięciu µm.

Scyntylatory

Bardzo popularne detektory do detekcji przejścia cząstek naładowanych
 Ograniczona czułość dotycząca krotności
 Niezwykle użyteczne, gdy nie potrzebna jest dokładna informacja dotycząca położenia cząstek
 Również użyteczne w budowaniu układów koincydencyjnych
 Materiały scyntylacyjne wykazują własności tzw. luminescencji, na skutek wzbudzenia przez cząstki naładowane – cząstki scyntylatora pochłaniają energię i emitują fotony przy de-ekscytacji

37

Fotopowielacze

Detektory światła

- Fotony są absorbowane na fotokatodzie, wybity fotoelektron jest następnie przyspieszany i powielany na kolejnych fotodynodach
- Wzmocnienia ok. 10⁶-10⁸, a sygnał jest proporcjonalny do liczby pjerwotnych fotonów
- Problem: praca w polu magnetycznym

q > 0

Układy śladowe i wierzchoł

Praktycznie zawsze stosowane są warstwy detektorów

39

Układy śladowe (II)

40

Układy śladowe (III)

Atlas TRT – Transition Radiation Tracker