

Wstęp do Modelu Standardowego

Multiplety hadronowe

Agnieszka Obłąkowska-Mucha

Wydział Fizyki i Informatyki Stosowanej Katedra Oddziaływań i Detekcji Cząstek

agh.edu.pl

Model Standardowy na obrazkach (pierwszy wykład)

three generations of matter interactions / force carriers (fermions) (bosons) Ш Ш ≃2.2 MeV/c2 ≃1.28 GeV/c² ≃173.1 GeV/c2 ≃124.97 GeV/c² mass charge 2/3 2∕₃ 2∕3 0 Η С t g u spin 1/2 1/2 1 1,5 charm gluon higgs up top BOSONS DUARKS ≃4.7 MeV/c² ≈96 MeV/c² ≃4.18 GeV/c² -1/3 -1/3 -1/3 S b ν d 1/2 1/2 1/2 bottom photon strange down SCALAR ≈105.66 MeV/c² ≈1.7768 GeV/c² ≈91.19 GeV/c² ≈0.511 MeV/c² **GAUGE BOSONS** VECTOR BOSONS -1 -1 Ζ е τ 1/2 1/2 1/2 electron Z boson muon tau EPTONS <1.0 eV/c² <0.17 MeV/c² <18.2 MeV/c² ≈80.39 GeV/c2 0 ±1 W Ve Vμ ντ 1 1/2 1,5 1,5 electron tau muon W boson neutrino neutrino neutrino

Standard Model of Elementary Particles

Model Standardowy ma już 50 lat!

Jak z kwarków zbudować hadrony

- W latach 30-tych znane były: *p*, *n*, *e*, potem miony i piony oraz neutrina.
- Odkrycie cząstek, które powstały w oddz. silnych, ale żyły zbyt długo (10⁻⁸ -10⁻⁹s czas charakterystyczny dla rozpadów słabych), np: $\pi p \to K^0 \Lambda$ doprowadziło do hipotezy istnienia kwarka nowego rodzaju: dziwnego *s* i odkrycia wielu nowych stanów.
- Pojawiła się potrzeba ich klasyfikacji. Z trzech kwarków (u d s grupa SU(3)) można zbudować (w stanie podstawowym) 9 mezonów i 27 barionów:

$$q = \begin{cases} u & \text{mezony} & 3 \otimes \overline{3} = 1 \oplus 8 \\ d & \\ s & \text{bariony} & 3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 10 \end{cases}$$

- W połowie lat 60 obserwowana symetria w świecie znanych cząstek doprowadziła Gell-Manna i Zweig'a do hipotezy istnienia kwarków.
- Schemat ułożenia znanych hadronów w "multiplety" opisany jest przez Kwarkowy Model hadronów.
- Kwarki uważane były za obiekty czysto matematyczne, a ich funkcja falowa musiała odzwierciedlać własności hadronów i zasady zachowania, jakim podlegają.
- W Modelu Kwarkowym opisujemy hadrony składające się z trzech najlżejszych kwarków u, d i s.
- Na początek zakłada się, że kwarki poruszają się z prędkościami nierelatywistycznymi

Mezony

Klasyfikacja hadronów ze względu na SPIN (całkowity) J i parzystość P

- Zakładając istnienie tylko trzech kwarków (u,d,s) można było wytłumaczyć całe spektrum.
- Pomiędzy multipletami o różnej dziwności występuje (prawie) stała różnica mas, równa masie kwarka s.
- Różne stany ładunkowe mają niewielkie różnice mas (oddział. elektromagnetyczne.
- Będziemy konstruować "Reguły gry", które tłumaczą takie ułożenie hadronów oraz brak około 9 barionów.

Bariony

Trzy kwarki tworzą bariony (stany podstawowe):

Model kwarkowy (powrót)

- opisywał obserwowane stany i przewidywał nowe,
 - wyjaśniał ułożenie hadronów w multiplety,
 - pozwalał na konstrukcję funkcji falowej,
 - dlaczego nie obserwujemy pojedynczego kwarka?

Co wiemy o spinach - ćwiczenie

• W przyrodzie możemy spotkać dwa rodzaje momentu pędu: jeden związany z ruchem jednego ciała z układu względem drugiego (orbitalny moment pędu *L*), drugi – z własnym obrotem ciała (spin *S*).

W mechanice klasycznej można zmierzyć jednocześnie wszystkie współrzędne momentu pędu.

W mechanice kwantowej można zmierzyć kwadrat długości momentu pędu i jedną współrzędną, przyjmuje się, że 3-cią współrzędną. Wynikiem są skwanowane wartości: $l(l+1)\hbar^2$ (dla operatora \hat{L}^2 i $m_l\hbar$ (gdzie $m_l = -l, -l+1 \dots - 1, 0, 1, \dots, l-1, l$) dla operatora \hat{L}_z .

Podobnie dla spinu – mierzymy S^2 i S_z , a wynikiem są odpowiednio: $s(s+1)\hbar^2$ i $m_s\hbar$ (gdzie $m_l = -s, -s+1 \dots - 1, 0, 1, \dots, s-1, s$), a $s = 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2} \dots$).

Leptony, czy układ dwóch lub trzech kwarków mają określone spiny, ale moment pędu może przyjąć dowolną (byle skwantowaną) wartość.

Stan spinowy cząstki można zapisać używając braketów: |s m_s⟩, np. stan spinowy elektronu lub kwarka o spinie 1/2 z trzecią składową 1/2, czyli stan ↑, zapisujemy jako: (¹/₂ ¹/₂). A zatem układ ↑↑ dwóch kwarków o spinach 1/2, z trzecią składową 1/2 zapiszemy jako:

$$\left|\frac{1}{2}\frac{1}{2}\right\rangle \left|\frac{1}{2}\frac{1}{2}\right\rangle = |1 1\rangle$$

Proszę znaleźć i zapisać pozostałe stany spinowe dwóch kwarków.

 Proszę określić, jaki może być całkowity moment pędu mezonów i barionów, które złożone są odpowiednio z dwóch i trzech kwarków.

Całkowity moment pędu cząstki jest to wektorowa suma jej spinu i momentu pędu: $\vec{J} = \vec{L} + \vec{S}$, ale jak dodajemy te wektory? W mechanice kwantowej nie znamy przecież wszystkich współrzędnych?

Momenty pędu

Orbitalny moment pędu *L* (kręt) – moment pędu związany z ruchem obrotowym kwarków względem siebie, Kręt jest wielokrotnością $\hbar L = n \hbar$ i przyjmuje 2l + 1 stanów, np. $L = 2, L_z = \{-2, -1, 0, 1, 2\}$

Stan o L = 0 – stan podstawowy,

wyższe L > 0 – wzbudzenia orbitalne

Całkowity moment pędu J: $\vec{J} = \vec{S} + \vec{L}$; $J = |L - S| \dots |L + S|$

Spin *S* cząstki złożonej = całkowitemu momentowi pędu *J* w jej układzie spoczynkowym

układ dwóch fermionów może być opisany za pomocą bazy:

$$|S = 1; S_{3} = 1\rangle = \uparrow\uparrow$$

$$|S = 1; S_{3} = 0\rangle = \frac{1}{\sqrt{2}}(\uparrow\downarrow+\downarrow\uparrow)$$

$$|S = 1; S_{3} = -1\rangle = \downarrow\downarrow$$

$$|S = 0; S_{3} = 0\rangle = \frac{1}{\sqrt{2}}(\uparrow\downarrow-\downarrow\uparrow)$$

A.Obłąkowska-Mucha WFIIS AGH Kraków

Spin układu dwóch fermionów

Nowa baza, w której wektory będą stanami własnymi operatora permutacji:

 $|1,1\rangle = |\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle = \uparrow \uparrow$ $|1,0\rangle = \frac{1}{\sqrt{2}}(|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle + |\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle) = \frac{1}{\sqrt{2}}(\uparrow \downarrow + \downarrow \uparrow)$

 $P_{12} |s_1, s_2\rangle = |s_2, s_1\rangle$

stany symetryczne wzgl $1 \leftrightarrow 2$ (na zad sprawdzić!)

 $|0,0\rangle = \frac{1}{\sqrt{2}}(|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle - |\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle) = \frac{1}{\sqrt{2}}(\uparrow\downarrow - \downarrow\uparrow)$

MEZONY: dwa kwarki o s=1/2 i o ustawieniach:

 $|1,-1\rangle = |\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle = \downarrow\downarrow$

stan antysymetryczny wzgl 1 \leftrightarrow 2

$$\uparrow S = 1 \text{ i } S_Z = \{+1,0,1\} \quad \text{TRYPLET} \quad 2 \otimes \overline{2} = 3 \oplus 1$$

$$\uparrow \downarrow S = 0 \text{ i } S_Z = 0 \quad \text{SINGLET}$$

Pomiar spinu cząstki:

1. pomiar przekrojów czynnych σ dla procesu typu $a + b \rightarrow c + d$. Zależy on od liczby dostępnych stanów spinowych:

$$\sigma(a+b \to c+d) \propto (2S_c+1)(2S_d+1)$$

2. mierząc rozkłady kątowe produktów jej rozpadu.

Całkowity moment pędu mezonów

Mezony grupowane są w multipletach według ich spinu i krętu.

Gdy L = 0 S = 0 mówimy o pseudoskalarach o J = 0,

Orbitalne wzbudzenia z L = 1, to skalary o J = 0 lub wektory aksjalne o J = 1 lub J = 2

	L	J
	0	0
S=0	1	1
	2	2
	0	1
S=1	1	0, 1, 2
	2	1, 2, 3

agh.edu.pl

Operator parzystości przestrzennej

- Operator parzystości przestrzennej \hat{P} powoduje inwersję osi układu współrzędnych.
- Odwrócenie trzech osi odpowiada zmianie znaku jednej osi i obrotowi o 180º.
- Nazywana również odbiciem zwierciadlanym.

Inwersja przestrzenna - def: $\hat{P} \Psi(\vec{r}) = \Psi(-\vec{r})$ Dla stanów własnych: $\hat{P} \Psi(\vec{r}) = p \Psi(\vec{r})$ A jak jeszcze raz: $\hat{P} \Psi(-\vec{r}) = p^2 \Psi(\vec{r})$ $\psi(\vec{r}) = p^2 \Psi(\vec{r})$ $\psi(\vec{r}) = p^2 \Psi(\vec{r})$ Stąd parzystość: $p = \pm 1$ Stan własny operatora \hat{P} , jest to wewnętrzna parzystość cząstki p.

Dla układu parzystość (wewnętrzna) jest multiplikatywną liczbą kwantową:

 $\Psi(AB) = \Psi(A)\Psi(B)$

- Będziemy sprawdzać, czy parzystość jest zachowana w oddziaływaniach (tzn, czy \hat{P} komutuje z H):
 - \hat{P} jest zachowane w oddz. silnych i elektromagnetycznych,
 - \widehat{P} nie jest zachowana w oddz. słabych.
- Harmoniki sferyczne mają dobrze określoną parzystość $p = (-1)^l$: (zad)

Parzystość mezonów

- Parzystość układu kwantowego zależy od parzystości ruchu względnego i parzystości składników.
- Układ 2 cząstek z krętem L ma parzystość: $P = P_1 P_2 (-1)^L$ $P_{Tot} = P_{wew} P_{wzgl}$
- Zakł, że fermiony i antyfermiony maja przeciwne parzystości, (kwarki i leptony +1)
 Bozony i antybozony te same parzystości, (foton, inne bozony pośredniczące -1)
- Zatem para kwark antykwark ma parzystość $(+1)(-1)(-1)^{L} = (-1)^{L+1}$

stany o L = 0 , 2... mają P = -1,

stany o L =1, 3 ... mają P = +1

- Parzystość wewn. protonu przyjmujemy P = +1.
- Innych cząstek liczymy lub wyznaczamy dośw.

	L	J	Р	J ^P
	0	0	-1	0 —
S=0	1	1	+1	1+
	2	2	-1	2 –
	0	1	-1	1 –
S=1	1	0, 1, 2	+1	0+, 1 +, 2 +
	2	1, 2, 3	-1	1-, 2-, 3 -

Operator sprzężenia ładunkowego

Sprzężenie ładunkowe, zmienia znak ładunku i momentu magnetycznego (zależy od ładunku) na przeciwny.

Operator sprzężenia ładunkowego C, działając na funkcję falową, przyporządkowuje jej funkcję falową antycząstki:

def: $\widehat{C} \psi = \overline{\psi}$

dla stanów własnych: $\widehat{c}|\psi(p,\lambda)\rangle = \eta_{c}|\psi(p,\lambda)\rangle$

powtórne działanie operatorem: $\hat{C}\hat{C}|\psi\rangle = \eta_C\hat{C}|\bar{\psi}\rangle = \eta_C\eta_C|\psi\rangle$ wartości własne: $\eta_C = \pm 1$

Operator \hat{C} zmienia cząstkę (nawet elektrycznie obojętną) w jej antycząstkę. Jeżeli stan danej cząstki (jej funkcja falowa) jest stanem własnym \hat{C} , to cząstka = antycząstka

Stanami własnymi \widehat{C} są tylko obojętne bozony.

Układ cząstka-antycząstka jest stanem własnym \widehat{C} . W dodatku działanie \widehat{C} jest takie samo, jak \widehat{P} : czyli zamienia fermiony miejscami... można zatem napisać:

$$\widehat{\boldsymbol{C}}|f\bar{f}\rangle = \eta_C|\bar{f}f$$

 $\widehat{\boldsymbol{C}}|f\bar{f}\rangle = (-1)^{l+s}|f\bar{f}\rangle$

jeżeli:
$ \bar{q} q angle = \bar{q} q angle$ to $\eta_{C} = +1$
$ \bar{q}q angle = - \bar{q}q angle$ to $\eta_{c} = -1$

Spektroskopia mezonów

mezon	S	L	J	Р	J PC	np
pseudosklarny	0	0	0	-1	0-+	π^0
pseudowektorowy	0	1	1	+1	1+-	h ₁
	0	2	2	-1	2-+	η_2
wektorowy	1	0	1	-1	1	ϱ^0
skalarny wektor aksjalny tensorowy	1	1	0, 1, 2	+1	0^{++} 1^{++} 2^{++}	a^0 a_1 f_2

Notacja spektroskopowa: ^{2S+1}L_J Stany L= 0, 1, 2, 3 oznaczamy jako S, P, D, F, np. dla L=0, ¹S₀ lub ³S₁

 $\hat{P}(\vec{p}) = \hat{P}(m \ d\vec{r}/dt) = -\vec{p} \quad \text{wektor} \\ \hat{P}(\vec{M}) = \hat{P}(\vec{r} \times \vec{p}) = (-\vec{r}) \times (-\vec{p}) = \vec{M} \quad \text{pseudowektor}$

Rozważmy układ nierozróżnialnych cząstek.

Działanie operatora zamiany miejscami dwóch cząstek (operator permutacji):

Def: $\widehat{P} \psi(1,2) = \psi(2,1)$

Równanie własne: $\widehat{P} \psi(1,2) = \eta_P \psi(1,2)$

działamy drugi raz: $\widehat{P} \ \widehat{P} \psi(1,2) = \widehat{P} \eta_P \psi(2,1) = \eta_P \eta_P \psi(1,2)$ $\psi(1,2) = \eta_P^2 \ \psi(1,2)$ $\eta_p = \pm 1$

wartości własne: $\eta_P = +1$ dla bozonów, czyli funkcja własna jest symetryczna; $\eta_P = -1$ dla fermionów, funkcja własna - antysymetryczna

Stany złożone z nierozróżnialnych cząstek opisywane są tylko takimi kombinacjami liniowymi funkcji falowych, które nie zmieniają właściwości symetrii względem permutacji (zamiany) par cząstek

Symetria przestrzenna funkcji falowej

Układ dwóch fermionów opisany jest funkcją falową: $\psi(\vec{r_1}, \vec{r_2})$,

gdy są blisko siebie: $\vec{r_1} = \vec{r_2} = \vec{r}$

i podziałamy na fcje falową operatorem permutacji:

 $\widehat{P}\,\psi(\vec{r},\vec{r}) = -\psi(\vec{r},\vec{r}) = \psi(\vec{r},\vec{r})$

to warunek jest możliwy do spełnienia, gdy: $\psi(ec{r},ec{r})=0$

Dwa nierozróżnialne fermiony nie mogą przebywać w tym samym miejscu (zakaz Pauliego).

Jakie są własności symetrii f. falowej opisującej zbiór identycznych fermionów względem zamiany współrzędnych dowolnej pary?

Taka zamiana nie zmienia stanu kwantowego, czyli wartości $|\Psi|^2$.

Zatem funkcja falowa fermionów (część przestrzenna) powinna być antysymetryczna, $\Psi \rightarrow -\Psi$, a bozonów - symetryczna $\Psi \rightarrow \Psi$.

$$\psi(\overrightarrow{r_1}, \overrightarrow{r_2}; S_1, S_2) = \phi(\overrightarrow{r_1}, \overrightarrow{r_2})\alpha(S_1, S_2)$$

Fcja falowa dwóch fermionów musi być antysymetryczna względem zamiany ich miejscami,

spinowe stany singletowe mają symetryczną część przestrzenną, trypletowe- antysymetryczną (zad.)

Funkcja falowa hadronów

Funkcja falowa opisuje całkowicie stan układu: $\Psi(\vec{x}, t) \equiv |\Psi\rangle$

Pełna funkcja falowa hadronów :

Oznaczymy: $|u\rangle \equiv \Psi_u$ $|p\rangle \equiv \Psi_p$, to: $|p\rangle \equiv |uud\rangle$

Ale czasem trudniej: $|\pi^0\rangle = \frac{1}{\sqrt{2}}(u\overline{u} - d\overline{d})$ - złożone kombinacje funkcji falowych kwarków

Np., gdy mezony mają być neutralne kolorowo to: $\eta(kolor) = \frac{1}{\sqrt{3}}(r\overline{r} + g\overline{g} + b\overline{b})$

Inne reguły i symetrie stawiają dodatkowe ograniczenia na postać funkcji falowej.

Funkcja falowa hadronów – część flavorowa

Zaczniemy od budowy funkcji falowej dla trzech najlżejszych kwarków (u, d, s) $m(u) \sim 0.3 \ GeV$ $m(d) \sim 0.3 \ GeV$ $m(s) \sim 0.5 \ GeV$ Kwarki są uwięzione w mezonach $q\bar{q}$ (9 cząstek) lub w barionach qqq - 27 stanów?

 χ (zapachowa) \propto |uds)

Stany spinowe układu trzech kwarków

BARIONY: trzy kwarki

$$\uparrow \uparrow \uparrow S = \frac{3}{2} \text{ i } S_Z = \left\{ +\frac{3}{2}; +\frac{1}{2}; -\frac{1}{2}; -\frac{3}{2} \right\}$$

$$\uparrow \uparrow \downarrow S = \frac{1}{2} \text{ i } S_Z = \left\{ +\frac{1}{2}; -\frac{1}{2} \right\}$$

$$\uparrow \downarrow \downarrow S = -\frac{1}{2} \text{ i } S_Z = \left\{ +\frac{1}{2}; -\frac{1}{2} \right\}$$

$$2 \otimes 2 \otimes 2 = 4 \oplus 2 \oplus 2$$

Jak skonstruować funkcję o wymaganej symetrii? Skoro mamy $\psi(1,2)$, która spełnia RS, to funkcja $\psi(2,1)$ również musi je spełniać. A zatem:

$$\psi_{sym} = A\{\psi(1,2) + \psi(2,1)\}$$

 $\psi_{antysym} = A\{\psi(1,2) - \psi(2,1)\}$

sprawdzamy!

Funkcja falowa hadronów

Konstrukcja funkcji falowej uwzględniać własności symetrii:

- dla mezonów symetryczna wzgl. zamiany kwarków,
- dla barionów antysymetryczna.

 $\Psi(\vec{q}) = \boldsymbol{\phi}(\vec{r}) \, \boldsymbol{\alpha}(s) \, \boldsymbol{\chi}(zapach) \, \boldsymbol{\eta}(kolor)$

Część opisująca zapach – jest symetryczna (bo hadrony są neutralne kolorowo)

 $\eta(kolor) = \frac{1}{\sqrt{3}}(r\overline{r} + g\overline{g} + b\overline{b})$

Pozostała część funkcji – iloczyn części spinowej i zapachowej musi mieć dobrze określoną symetrię.

Żmudna procedura prowadzi do np:

$$\begin{split} |p\uparrow\rangle &= \frac{1}{\sqrt{18}} (2u\uparrow u\uparrow d\downarrow - u\uparrow u\downarrow d\uparrow - u\downarrow u\uparrow d\uparrow + \\ 2u\uparrow d\downarrow u\uparrow - u\uparrow d\uparrow u\downarrow - u\downarrow d\uparrow u\uparrow + \\ 2d\downarrow u\uparrow u\uparrow - d\uparrow u\downarrow u\uparrow - d\uparrow u\uparrow u\uparrow u\uparrow) \end{split}$$

Warunki symetrii ograniczają liczbę najlżejszych barionów do 18 stanów

(oktet i dekuplet), chociaż teoretycznie mogłoby ich występować 27!

Model kwarkowy

Model Kwarkowy dla trzech kwarków (u,d,s):

- opisywał obserwowane stany i przewidywał nowe,
- wyjaśniał ułożenie hadronów w multiplety,
- pozwalał na konstrukcję funkcji falowej,
- dlaczego nie obserwujemy pojedynczego kwarka?

Spin (S)	Orbital angular	Total angular	Parity (P)	Condensed
	momentum (L)	nomentum (5)	(see below)	notation (J)
	0	1/2	+	1/2+
17	1	³ / ₂ , ¹ / ₂	_	³ / ₂ ⁻ , ¹ / ₂ ⁻
/2	2	⁵ / ₂ , ³ / ₂	+	⁵ / ₂ ⁺ , ³ / ₂ ⁺
	3	⁷ /2, ⁵ /2	_	⁷ /2 ⁻ , ⁵ /2 ⁻
	0	³∕₂	+	3⁄2+
	1	⁵ / ₂ , ³ / ₂ , ¹ / ₂	-	⁵ / ₂ ⁻ , ³ / ₂ ⁻ , ¹ / ₂ ⁻
3⁄2	2	⁷ / ₂ , ⁵ / ₂ , ³ / ₂ , ¹ / ₂	+	⁷ / ₂ ⁺ , ⁵ / ₂ ⁺ , ³ / ₂ ⁺ , ¹ / ₂ ⁺
	3	⁹ / ₂ , ⁷ / ₂ , ⁵ / ₂ , ³ / ₂	_	9/2 ⁻ , 7/2 ⁻ , 5/2 ⁻ , 3/2 ⁻

Baryon angular momentum quantum numbers for L = 0, 1, 2, 3

Poszukiwaniem i badaniem różnych stanów zajmuje się SPEKTROSKOPIA

Nierelatywistyczny model kwarkowy:

1. Energia kinetyczna kwarków o wiele mniejsza niż ich masy spoczynkowe.

Założenie to jest poprawne dla stanów kwarków powabnych i pięknych (c i b).

Dla stanów lekkich kwarków (u, d, s) czasem daje dobre wyniki.

2. Rozwiązanie równania Schrödingera z potencjałem oddziaływania kwark-kwark (QCD)

 $V(r) = \frac{a}{r} + br$

a/r – człon typu kulombowskiego, wynika z oddz. między dwoma kwarkami przez wymianę gluonu, dominuje dla małych r,

br – człon liniowy uwzględniający uwięzienie kwarków w hadronach; dominuje dla dużych r.

FAKTY doświadczalne:

1. $m(\rho^+) > m(\pi^+)$ (770 MeV vs 140 MeV), a ten sam skład {u -anty d}

- mezony te różnią się orientacją spinów: ↑↑ S=1 i S=0 ↑↓ (oddz. spin-spin)
- 2. oddz. spinu elektronu z polem magnetycznym protonu (rozszczepienie nadsubtelne $\sim \alpha_{elm}$),
- 3. oddz. pomiędzy kwarkami a gluonami (kolorowe $\sim \alpha_s$)

Przyczynki do mas hadronów:

- 1. Masy konstytuentne kwarków (liczone jako ułamek masy hadronu masa z oddziaływaniem),
- 2. Efekty związane z kulombowskim oddz. kwarków (rzędu 1-2 MeV),
- 3. Rozszczepienie nadsubtelne:
 - oddz. momentów magnetycznych ($\Delta m = 1-2 \text{ MeV}$),

- kolorowe oddz. magnetyczne – przesunięcie poziomów energetycznych dla kwarków.
 Formuła masowa (A- stała):

$$M_{q\bar{q}} = m_1 + m_2 + A \frac{\vec{S}_1 \cdot \vec{S}_2}{m_1 m_2}$$

$$m_{\rho}$$

$$2 m_u (bez spinu)$$
A co z masą barionów?

Cząstka jako poziom energetyczny w Modelu Kwarkowym

Atom wodoru o masie rzędu 1 GeV – różnica energii pomiędzy powłokami mała (eV) i widzimy stany o rożnych energiach jako jeden stan

Dla stanów związanych kwarków, rozszczepienia tak duże, że widoczne są nowe cząstki.

UCZELNIA

BADAWCZA

AGH

Masy hadronów

W eksperymentach z rozproszeniami wysokoenergetycznych cząstek udaje się oddzielić masę kwarka od chmury gluonów. Dostajemy w ten sposób tzw. masę prądową ("gołą"):

kwark	masa prądowa [MeV]	masa konstytuentna [MeV]
u	1.5-3.3	330
d	3,5-6	330
S	80-130	500
С	1150-1350	1600
b	4100-4400	4200
t	170 900	171 000

masa kostytuentna =
masa prądowa
+ pole gluonowe

np proton: m=938 MeV "goła" masa 3 kwarków = 11 MeV Gluony są bezmasowe, ale przenoszą energię.

Dla lekkich kwarków m prądowa < m konstytuentnej.

Dla ciężkich kwarków – wynik zależy od skali i przyjętych modeli.

Masy hadronów

Masy hadronów policzone z formuły masowej i wyznaczone doświadczalnie są ze sobą zgodne:

	masa obliczona [MeV]	masa zmierzona [MeV]	
π	140	138	mezony skalarne
K	484	496	
ρ	780	770	
ω	939	939	
Λ	1116	1114	wektorowe
Σ	1193	1179	

agh.edu.pl

Model kwarkowy - podsumowanie

Nierelatywistyczny model kwarkowy:

- Energia kinetyczna kwarków o wiele mniejsza niż ich masy spoczynkowe.
 - Założenie to jest poprawne dla stanów kwarków powabnych i pięknych (c i b).
 - Dla stanów lekkich kwarków (u, d, s) czasem daje dobre wyniki.
- Model kwarkowy może uporządkować mezony i bariony w multiplety.
- Model kwarkowy przewiduje masy i momenty magnetyczne hadronów (zgadza się z dośw.)
- Model kwarkowy musi zostać rozszerzony po odkryciu cięższych kwarków.

Czwarty element

Istnienie hadronów z 4. kwarkiem zostało przewidziane teoretycznie (w przeciwieństwie do kwarka s). Oszacowano jego masę na ok. 2 GeV.

I pokolenie	Q	masa	II pokolenie	Q	masa
u	+2/3	0.35 GeV	С	+2/3	1.5 GeV
d	-1/3	0.35 GeV	S	-1/3	0.5 GeV

Charm – liczba kwantowa c jest zachowana w oddz. silnych i elm, nie zachowana w słabych (podobnie jak s).

Najlżejsze MEZONY POWABNE to skalary $D^{0}(cu), D^{+}(cd), D_{s}^{+}(cs)$

Mezony "czarmowe" wektorowe mają taki sam skład kwarkowy, ale spiny kwarków ustawione są równolegle: $D^{*0}(cu)$, $D^{*+}(cd)$, $D^{*+}_{s}(cs)$

Rozpady czarmowych mezonów zachodzą poprzez oddziaływania słabe $\tau^{10^{-12}}$ s, przeważnie na mezony dziwne (z kwarkiem s).

С

S

Czwarty kwark – powabny (charm)

- W roku 1974, niezależnie w dwóch ośrodkach, potwierdzono istnienie czwartego, bardzo ciężkiego kwarka c (powabnego)...
- Model Kwarków został rozszerzony o następne multiplety, ale zachwiana (złamana) została prosta struktura różnic mas (degeneracja mas, oddziaływania spin-spin i spin-orbita).

Czwarty kwark – multiplety czarmowe

W 1974 roku w Brookhaven badano produkcję nowej cząstki J w zderzeniach protonów przy najwyższych (wtedy) energiach: Vs = 3.1 GeV w procesie:

 $p + N \rightarrow J + X \rightarrow e^+ + e^- + X$

- Stan X był dowolny, ale badana cząstka J miała znane liczby kwantowe i miała się rozpadać na elektron i pozyton.
- Spektrometr został dedykowany poszukiwaniom wektorowej cząstki o liczbach kwantowych fotonu J^{PC} = 1⁻⁻ rozpadającej się na e⁺e⁻.

Przypadek taki pojawiał się raz na milion. Najważniejsze-separacja pionów – progowe liczniki Czerenkowa i kalorymetr

agh.edu.pl

Dwa odkrycia – jedna cząstka

Jednocześnie SPEAR na SLACu – akceleratorze e⁺ e⁻ pracującym przy √s=8 GeV zadecydowano o obniżeniu energii do ok. 3 GeV · Zaobserwowano znaczny rezonans w stanach końcowych z hadronami, mionami i elektronami:

Skoro dwa eksperymenty odkryły ten sam stan, to dano mu nazwę:

- Dotychczas omawiane cząstki miały na tyle długi czas życia, że mogły być obserwowane bezpośrednio.
- Jeśli masa hadronu jest wystarczająco duża, aby rozpadł się on poprzez oddziaływania silne nawet w czasie 10⁻²⁴s to rozpadają się w miejscu powstania (prawie).
- O takich stanach mówimy **REZONASE**.

Ewidencja rezonansów możliwa jest poprzez:

- obserwację maksimum w procesie produkcji

- obserwację maksimum na spektrum masy niezmienniczej stanów końcowych:

37

Funkcja falowa rozpadającego się stanu:

$$\Psi(t) = \Psi(0) e^{-iE_R t} e^{-t/2\tau} = \Psi(0) e^{-t(iE_R + \Gamma/2)} \qquad \tau = 1/\Gamma$$

Po czasie "O" stan o energii E_R ewoluuje w czasie i może się rozpaść – prawd. znalezienia cząstki po czasie t:

 $I(t) = \Psi^* \Psi = \Psi(0)^2 e^{-t/\tau}$

Zależność energetyczna jest transformatą Fouriera wykładniczej zależności od czasu (zad*):

 $\Psi(E) = \int \Psi(t) e^{iEt} dt = \Psi(0) \int e^{-t[\Gamma/2 + iE_R - iE]} dt$

Wzór Breita-Wignera (nierelatywistyczny), z uwzględnieniem spinu wszystkich cząstek:

$$\sigma(E) = \frac{(2J+1)}{(2s_a+1)(2s_b+1)} \frac{4\pi}{E^2} \frac{\Gamma_i \Gamma_f}{(E-M_R)^2 + (\Gamma/2)^2}$$

Wzór relatywistyczny (prawie identyczny kształt):

$$\sigma(E) = \sigma_{max} \frac{M^2 \Gamma^2}{(s - M^2)^2 - M^2 \Gamma^2}$$

Parametry rezonansów:

M – masa, Γ - szerokość, J – całkowity spin,

 $Γ_i$, $Γ_f$ – szerokości cząstkowe stanów początkowego i końcowych.

$$\sigma(E) = \frac{3\pi}{s} \frac{\Gamma_e \Gamma_f}{(E - M_R)^2 + (\Gamma/2)^2}$$

Czarmonium

Odkryta cząstka była niezwykle wąska. Obecna wartość: $\Gamma(J/\psi)$ ~87 keV

Po dokładniejszych skanach przy stopniowo zmienianej energii odkrywane były nowe stany, wszystkie o małej szerokości.

Z rozkładów doświadczalnych obserwowana szerokość ok. 3 MeV wynika z rozdzielczości detektorów, ale wyznaczenie przekroju czynnego umożliwia wyznaczenie szerokości (splot-konwolucja).

Rozpad J/ψ na dwa powabne mezony jest niemożliwy (zbyt mała masa) – rozpad na lekkie cząstki (np. leptony) zachodzi b. rzadko

ślad cząstek w przypadku wyjaśnia nazwę ψ

Szerokość rezonansu

π

IF $m(\psi) < 2m(D)$

V

Rozpad na mezony D dozwolony -normalna szerokość dla rozpadów silnych, $\Gamma(\psi'')$ =24 MeV

Diagramy z niepołączonymi liniami są silnie tłumione -reguła Zweiga- (trzy gluony) - rozpad tłumiony – mała szerokość

number of events (arbitrary units)

Trzecie pokolenie – kwark piękny (b)

Skoro mieliśmy trzy pokolenia leptonów, powinno być również 3. pokolenie kwarków. W 1977 w Tevatronie odkryto stan związany kwarków b anty-b.

 $p + (Cu, Pt) \rightarrow \mu^+ \mu^- + X$

Nazwano ten stan Y(9460) Oszacowano m(b) = 4.7 GeV

no i odkrywano nowe

stany....

State	Quark	M(MeV)	Γ/τ	J^{PC}	Ι
$\Upsilon(1^1S_3)$	$b\bar{b}$	9460	54 keV	1	0
$\Upsilon(2^1S_3)$	$b\overline{b}$	10023	32 keV	1	0
$\Upsilon(3^1S_3)$	$b\bar{b}$	10355	20 keV	1	0
$\Upsilon(4^1S_3)$	$b\bar{b}$	10580	20 MeV	1	0
B^+	$u\overline{b}$	5279	1.6 ps	0^{-}	1/2
B^0	$d\bar{b}$	5279	1.5 ps	0^{-}	1/2
B_s^0	$s\overline{b}$	5368	1.5 ps	0^{-}	0
B_c^{+}	$c\overline{b}$	6286	0.5 ps	0^{-}	0

Bottonium

Późniejsze wyniki (CLEO 1980):

Spektrum "bottonium"

Model potencjalny

Odkrycie dwóch stanów związanych ciężkich kwarków i ich całego spektrum porównuje się do układu pozytonium (elektron – pozyton), który oddziałuje ze sobą poprzez potencjał kulombowski $V_{em} = -\frac{\alpha_{em}}{r}$.

Mass [GeV/ c²] Mass [GeV/ c²]

A zatem część potencjału przy małych odległościach (nierelatywistyczną, bo kwarki ciężkie) oddz. silnych można zapisać jako:

U –	$4 \alpha_s$
VQCD -	$-\overline{3}\overline{r}$

agh.edu.pl

Ostatni element

$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix} + \frac{2}{3} \\ -\frac{1}{3}$

Poszukiwanie "brata" kwarka b o ładunku Q=+2/3 zajęło 20 lat.

Kwark t miał być bardzo ciężki i produkowany musiał być w parach.

1995 roku w Tevatronie ogłoszono 27 przypadków przy Vs = 2 TeV w procesie: $p + \overline{p} \rightarrow t \, \overline{t} + X$

 $t \to W^+ + b \to W^+ + jet(\overline{b}) \qquad W \to e \nu_e$ $\overline{t} \to W^- + \overline{b} \to W^- + jet(b) \qquad W \to q \ \overline{q} \to jet \ 2 + jet \ 3$

jet2 W^{+} \overline{p} \overline{p}

Szuka się:

- jeden elektron (mion),
- jedno neutrino,
- 4 pęki hadronów (2 z b),

tu widać "przemianę" kwarka t w kwark b – jest to możliwe TYLKO w oddziaływaniach słabych

Masa t mogła być wyznaczona bezpośrednio poprzez masę produktów jego rozpadu: M(t)= 174.2 ± 3.3 GeV

Kwark t jest tak ciężki, że zanim utworzy stan związany, ulega rozpadowi.

Jego czas życia jest krótszy niż typowy czas hadronizacji.

Brak "toponium" !

Brak top - hadronów.

Hadrony (nie)standardowe

• "Exotic": mesons or baryons with "exotic" quantum number (J^{PC} cannot be formed from qqq or $q\overline{q}$).

1974 discovery of charmonium J/ψ , ψ ', $\chi_{c0,1,2}$,

1977 – bottonium Υ, Υ', Υ'''.

- Both systems have masses and widths in agreement with the potential model.
- If new state does not fit it must contain a substructure more complex than $Q\bar{Q}$

Stany egzotyczne

Number of intriguing states: $Z(4430)^{\pm}$, $P_c(4380)$, $P_c(4450)$ and > 20 other.

2011-01-01 2012-01-01 2013-01-01 2014-01-01 2015-01-01 2016-01-01 2017-01-01 2018-01-01 2019-01-01 2020-01-01 2022-01-01 2022-01-01 Date of arXiv submission

Stany egzotyczne - nazwy

PDG – no rule for exotic states.

Idea of the proposal:

- T for tetra, P for pentaquark
- Superscript: indication of izospin, parity and G-parity
- Subscript: heavy quark content.
- no change in name if not unambiguously declared exotic

М	inimal quark content	Current name	$I^{(G)}, J^{P(C)}$	Proposed name
	$c\bar{c}$	$\chi_{c1}(3872)$	$I^G = 0^+, J^{PC} = 1^{++}$	$\chi_{c1}(3872)$
	$c\bar{c}ud$	$Z_c(3900)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^{b}_{\psi 1}(3900)^{+}$
	$c\bar{c}u\bar{d}$	$X(4100)^+$	$I^{G} = 1^{-}$	$T_{\psi}(4100)^+$
	$c\bar{c}u\bar{d}$	$Z_c(4430)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^{b}_{\psi 1}(4430)^{+}$
	$c\bar{c}(s\bar{s})$	$\chi_{c1}(4140)$	$I^G = 0^+, J^{PC} = 1^{++}$	$\chi_{c1}(4140)$
	$c\bar{c}u\bar{s}$	$Z_{cs}(4000)^+$	$I = \frac{1}{2}, J^P = 1^+$	$T^{\theta}_{\psi s1}(4000)^+$
	$c\bar{c}u\bar{s}$	$Z_{cs}(4220)^+$	$I = \frac{1}{2}, J^P = 1^?$	$T_{\psi s1}(4220)^+$
	$c\bar{c}c\bar{c}$	X(6900)	$I^G = 0^+, \ J^{PC} = ?^{?+}$	$T_{\psi\psi}(6900)$
	$cs\bar{u}\bar{d}$	$X_0(2900)$	$J^{P} = 0^{+}$	$T_{cs0}(2900)^0$
	$cs\bar{u}\bar{d}$	$X_1(2900)$	$J^{P} = 1^{-}$	$T_{cs1}(2900)^0$
	$cc\bar{u}\bar{d}$	$T_{cc}(3875)^+$		$T_{cc}(3875)^+$
	$b\overline{b}u\overline{d}$	$Z_b(10610)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\Upsilon 1}(10610)^+$
	$c\bar{c}uud$	$P_c(4312)^+$	$I = \frac{1}{2}$	$P_{\psi}^{N}(4312)^{+}$
	$c\bar{c}uds$	$P_{cs}(4459)^0$	$I = \overline{0}$	$P_{\psi s}^{\Lambda}(4459)^{0}$

 P_{cs} is a possible J/ψ resonance c indicates $c\bar{c}$ content, s-open strangeness, $N: I = \frac{1}{2}, \Lambda: I = \frac{3}{2}$

A.Obłąkowska-Mucha

WFIIS AGH Kraków

Stany egzotyczne - historia

2003 Belle sees X(3872) in $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$ (by accident). 2005 Belle searched for X(3872) in $B^+ \rightarrow J/\psi K^+ \omega$ but found Y(3940). 2005 BaBar searched for X(3872) in $e^+e^- \rightarrow X(3872)$ but found Y(4260).

2015-19 LHCb $P_{\psi}^{N}(4312)^{+} c\bar{c}uud \text{ in } \Lambda_{b} \rightarrow J/\psi pK$ (+ 2 peaks)

2021 3.1 σ evidence for $P_{\psi s}^{\Lambda}(4459)$ $c\bar{c}uds$ in $\Xi_{b}^{-} \rightarrow J/\psi \Lambda K$

Sci.Bull. 66 (2021) 1278-1287

Stany egzotyczne

- First observation of $B^+ \rightarrow D_s^+ D_s^- K^+$
- LHCb: 9 fb⁻¹
- Reconstruction:
 - $D_s^+ \rightarrow K^+ K^- \pi^+$
- Selection similar to $B \rightarrow \overline{D}D_s^+\pi$

N_{sig} = 360±22 Purity: 84%

 Near-threshold D⁺_sD⁻_s enhancement X(3960) - near-threshold peak X(4140) - dip at about 4.14 GeV via interference

