

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE AGH UNIVERSITY OF KRAKOW

Model Standardowy

Agnieszka Obłąkowska-Mucha

Wydział Fizyki i Informatyki Stosowanej Katedra Oddziaływań i Detekcji Cząstek Oddziaływania elektrosłabe Oscylacje zapachu

Oddziaływania słabe

- Rozpady β zachodzą poprzez oddziaływania słabe:
 - neutron zmienia się w proton i emituje elektron i neutrino
- 1930 W.Pauli zaproponował hipotezę neutrino (odkryte w 1956)
- Obecnie rozpady β uważane są jako zmianę kwarków $u \leftrightarrow d$ spowodowaną emisją bozonu W^{\pm} :

e.g.

W

Oddziaływania słabe

- Oddziaływania słabe są INNE niż elektromagnetyczne i silne:
 - są przenoszone przez ciężkie bozony
 - zmieniają rodzaj cząstki (leptonów i kwarków)
- WSZYSTKIE cząstki (również neutrina) oddziałują słabo

Słabe rozpady są słabe, a więc cząstka żyje stosunkowo długo

Model Standardowy - A. Obłąkowska-Mucha - AGH

Gargamelle bubble chamber, CERN PS 1971-77

a <u>leptonic neutral current interaction</u>. A <u>neutrino</u> interacts with an <u>electron</u>, the track of which is seen horizontally, and emerges as a neutrino without producing a <u>muon</u>. [Wikipedia]

Oddziaływania słabe a silne i elm

- Oddziaływania elektromagnetyczne:
 - pomiędzy kwarkami i naładowanymi leptonami
 - przenoszone przez bezmasowy foton
 - ✓ foton oddziałuje z ładunkiem elektrycznym, $\alpha \approx 1/100$
 - nie zmieniają rodzaju cząstek
 - ✓ na odległości 10^{-15} m F_{elm} ≈ 200 N
- Oddziaływania silne
 - pomiędzy kwarkami i gluonami
 - przenoszone przez bezmasowe gluony
 - ✓ gluony oddziałują z ładunkiem kolorowym, $\alpha_s \approx 1$
 - nie zmieniają rodzaju cząstek
 - ✓ na odległości 10^{-15} m F_{strong} ≈ 160 000 N
- Oddziaływania słabe
 - pomiędzy kwarkami i wszystkimi leptonami
 - ✓ przenoszone przez ciężkie bozony (bo mały zasięg), $\alpha_W \approx 1/40$
 - 🗸 zmieniają rodzaj cząstki
 - ✓ na odległości 10^{-15} m F_{weak} ≈ 0.002 N

Oddziaływania słabe i elektromagnetyczne

- dla niskich energii, gdy $q^2 \ll M_W^2$ propagator w postaci $\frac{1}{M_W}$ czyli punktowego oddziaływania Fermiego,
 - ciężki bozon oznacza krótki zasięg oddziaływania,

 $M_W = 80.4 \pm 0.1 \, GeV$

$Z \approx 0.002 \, fm$

- wymieniany bozon przenosi ładunek elektromagnetyczny,
- oddziaływanie ZMIENIA ZAPACH KWARKA!
- oddziaływanie łamie parzystości

AGH

BADAWCZA

Oddziaływania słabe i trzy bozony

- Przy rozpraszaniu neutrino-elektron wg. teorii Fermiego, przekrój czynny zmierza do nieskończoności.
 - jeśli oddziaływanie zachodzi z wymianą ciężkiego bozonu propagator powoduje zmniejszenie szybko rosnących równań,
- Przy rozpraszaniu $e^+e^- \rightarrow W^+W^-$ przekrój czynny również miał zbyt szybki wzrost

- Oddziaływanie zachodzi poprzez wymianę bozonów pośredniczących – fotonu, W⁺, W⁻ i Z⁰, które są ze sobą związane.
- Jedynie taka teoria opisuje wyniki doświadczalne i przewiduje nowe efekty.

interferencja dwóch diagramów

MS- oddziaływania

W ramach MS opisujemy elementarne fermiony ich oddziaływania:

ELEKTROMAGNETYCZNE

ładunek elektryczny

SŁABE CC (charge current)

SILNE

SŁABE NC (neutral current)

oddz. słabe zmieniają rodzaj kwarków pomiędzy generacjami!

Oddziaływania słabe

- Procesy słabe można podzielić ze względu na rodzaj oddziałujących cząstek:
 - leptonowe: $\mu^- \rightarrow e^- \nu_\mu \bar{\nu}_e$

- półleptonowe:

 $\begin{array}{l} n \rightarrow p \; e^{-} \; \bar{\nu}_{e} \\ p \rightarrow n \; e^{+} \nu_{e} \\ \pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} \end{array}$

- nieleptonowe:

- $\begin{array}{l} \Lambda \rightarrow p \ \pi^{-} \\ D^{0} \rightarrow K^{-} \ \pi^{+} \\ B^{0} \rightarrow K^{-} \ \pi^{+} \end{array}$
- Procesy słabe zachodzą poprzez wymianę:
 - bozonu pośredniczącego W^{\pm} (prądy naładowane)
 - bozonu pośredniczącego Z⁰ (prądy neutralne)

q

Zajmiemy się tu prądami naładowanymi:

e

Oddziaływania słabe i elektromagnetyczne

- Przy niskich energiach (małych przekazach pędu) oddziaływania słabe i elektromagnetyczne różnią się wyraźnie (zasięg, czas życia),
- Przy wyższych energiach (rozpraszanie neutrin) opis Fermiego oddz. słabych daje złe przewidywania.
- pojawia się idea UNIFIKACJI ODDZIAŁYWAŃ SŁABYCH I ELEKTROMAGNETYCZNYCH

 $lpha_{s} pprox 0.2$ $lpha_{W} pprox 0.03$ $lpha_{elm} pprox 0.01$

(Glashow, Salam, Weinberg 1961-67, nagroda Nobla 1979).

Model Standardowy - A. Obłąkowska-Mucha - AGH

- Idea unifikacji polega na opisaniu teorii tym samym lagranżianem i tymi samymi bozonami pośredniczącymi.
- Przesłaniem nowej teorii były FAKTY DOŚWIADCZALNE.

Słabe rozpady leptonów

 Prądy naładowane (oddz. przenoszone przez bozon W) działają w obrębie dubletów (tego samego pokolenia):

BRAK: $W \rightarrow e^- \nu_{\mu}$

nie ma oddziaływań pomiędzy leptonami z różnych pokoleń !!!

Słabe rozpady kwarków

• Podobnie mogłoby być dla kwarków:

gdyby nie obserwacja procesu: $K^+(u \bar{s}) \rightarrow \mu^+ \nu_{\mu}$

w którym widać wierzchołek $W^+ \rightarrow u\bar{s}$ ze **ZMIANĄ POKOLENIA!**

• Oznacza to, że słabe rozpady kwarków wyglądają trochę inaczej, bo mogą zachodzić ze zmianą pokolenia

Mieszanie kwarków

 Stany, które biorą udział w słabych oddziaływaniach są ortogonalnymi kombinacjami stanów o określonym zapachu, czyli:

oddz. słabe "widzą" zamiast kwarka d – jego stan będący kombinacją d i s:

STANY SŁABE

•

stany masowe (silne, o określonycm zapachu, flavorze)

 $\begin{pmatrix} d'\\ s' \end{pmatrix} = \begin{pmatrix} \cos\theta_c & \sin\theta_c\\ -\sin\theta_c & \cos\theta_c \end{pmatrix} \begin{pmatrix} d\\ s \end{pmatrix}$

człony proporcjonalne do $\sin \theta_c$ są tłumione.

 $d' = d\cos\theta_c + s\sin\theta_c$ $s' = s\cos\theta_c - d\sin\theta_c$

kąt mieszania (kąt Cabbibo)

$$\theta_C = 13^{\circ}$$

W oddziaływaniach słabych częściej występują człony z $\cos \theta_c$,

Mieszanie w trzech rodzinach kwarków

• Uogólnienie na trzy rodziny kwarków:

$$egin{pmatrix} d' \ s' \ b' \end{pmatrix} \;=\; \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \ \end{pmatrix} egin{pmatrix} d \ s \ b \end{pmatrix}$$

najbardziej częste są przejścia na diagonalach,

przejścia ze zmianą dwóch pokoleń są silnie TŁUMIONE

Mieszanie w trzech rodzinach kwarków

W

1

• Kwark *d* dla oddziaływań słabych "widziany jest" jako *d*', czyli mieszanina *d*, *s*, i *b*:

Mieszanie w trzech rodzinach leptonów?

• Jak by wyglądało mieszanie pomiędzy generacjami leptonów?

- Problem doświadczalny jak określić rodzaj neutrina?
- Kwarki mają różne masy i można rozróżnić stany końcowe.

MS – podejdźmy teraz formalnie do oddziaływań słabych:

Prądy i amplitudy w rozpadach słabych

Zacznijmy od rozpadów leptonowych:

- Widzimy, że za każdym razem, gdy powstaje elektron, powstaje również jego neutrino.
- Musimy również dodać pewien dynamiczny czynnik, który odpowiednio uwzględnia parzystość
 C i P, oraz łamanie CP

$$j^{w} = \overline{\psi}_{l} \Lambda \psi_{\nu_{l}}, \qquad l = \{e, \mu\}$$
Prąd
Prąd
Czynnik
dynamiczny
$$\overline{j}^{w} = \overline{\psi}_{\nu_{l}} \Lambda \psi_{l}, \qquad l = \{e, \mu\}$$

Prądy i amplitudy w rozpadach słabych

Wszystkie amplitudy (pierwszego rzędu) obserwowane w naturze są iloczynem tych prądów!

Procesy słabe

 Czy do opisu procesów leptonowych i kwarkowych potrzeba dwóch różnych stałych sprzężenia?

- Byłoby praktyczniej, gdyby prądy leptonowe i hadronowe miały ten sam G.
- W półleptonowych rozpadach jest jeszcze gorzej:

agh.edu.pl

Procesy słabe i mieszanie Cabbibo

Następne stałe sprzężenia?

- Nicola Cabbibo (1963) miał pomysł, który znacznie ułatwił opis rozpadów słabych:
 - stany słabe są różne od stanów masowych (o określonycm zapachu "flavourze")
 - ✓ stany kwarkowe są stanami o zmieszanych flavourach
 - ✓ dzięki temu jest jedna, uniwersalna, stała sprzężenia!

Procesy słabe i mieszanie Cabbibo

• W teorii Cabbibo kwarki d i s mieszają się z współczynnikami macierzy (macierzy Cabbibo):

Procesy słabe i mieszanie Cabbibo

W teorii Cabbibo kwarki d i s mieszają się z współczynnikami macierzy (Cabbibo), co reprezentowane jest jako OBRÓT stanów masowych (stanów własnych masy) |d> i |s> do układu stanów słabych |d'> i |s'>.

$$s' \qquad s \qquad d' \qquad \begin{pmatrix} u \\ d' \end{pmatrix} = \begin{pmatrix} u \\ d \cdot \cos(\theta_c) + s \cdot \sin(\theta_c) \end{pmatrix}$$
$$\theta_c = 13.04^{\circ}$$

• Kąt mieszania (kąt Cabbibo) pozwala na mówienie o uniwersalności oddziaływań słabych:

Procesy słabe i mieszanie Cabbibo

 Kąt mieszania (kąt Cabbibo) jest jednym z parametrów MS, który musi zostać zmierzony, nie wynika z teorii

 FCCC (Flavour Changing Charge Currents) mogą teraz sprzęgać się z różną siłą do różnych generacji kwarków!

Mieszanie kwarków z czarmem

 Teoria elektrosłaba – model Glashow-Weinberg-Salam (GIM), m.in. opisuje mieszanie z kwarkiem c:

Dla dwóch generacji kwarków mieszanie opisane jest przez pojedynczy, rzeczywisty parametr – brak łamania parzystości CP.

Mieszanie trzech generacji kwarków

 Idea: kwarki "dolne" w rozpadach słabych uczestniczą jako mieszane stany masowe (taka konwencja, mogły też mieszać się kwarki "górne"):

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$
Stany (własne)
Macierz mieszania
Cabbibo-Cobayashi-Maskawa
Masowe e-stany

- Elementy V_{ij} macierzy CKM są liczbami zespolonymi.
- Macierz CKM jest UNITARNA (zachowanie prawdopodobieństwa)
- Elementów macierzy CKM nie można wyznaczyć z teorii muszą być ZMIERZONE.

"Słaby" wierzchołek

 Idea: kwarki "dolne" w rozpadach słabych uczestniczą jako mieszane stany masowe (taka konwencja, mogły też mieszać się kwarki "górne"):

"Słaby" wierzchołek

 Idea: kwarki "dolne" w rozpadach słabych uczestniczą jako mieszane stany masowe (taka konwencja, mogły też mieszać się kwarki "górne"):

"Słaby" wierzchołek i łamanie CP

Elementów macierzy CKM nie można wyznaczyć z teorii – muszą być ZMIERZONE.

```
 \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{pmatrix} \approx \begin{pmatrix} 0.974 & 0.226 & 0.004 \\ 0.23 & 0.96 & 0.04 \\ 0.01 & 0.04 & 0.999 \end{pmatrix}
```

"Standardowa" parametryzacja macierzy CKM:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = c_{ij} = c_$$

Macierz CKM

- Macierz CKM jest UNITARNA: $V^{\dagger}V = 1$
- Dla iloczynów, tzw, kwadrantów: Q_{aibj} = V_{ai}V_{bj}V^{*}_{aj}V^{*}_{bi} with a ≠ b and i ≠ j, definiujemy niezmiennik Jarlskog:

 $J = Im (Q_{udcs}) = -Im (Q_{ubcs})$

- Urojona część każdego kwadranta jest taka sama, w dodatku równa 2x powierzchnia trójkąta unitarności... Parametr ten pokazuje stopień łamania parzystości CP w oddz. słabych.
- ✓ Jej rząd to: $\pm 2.8 \cdot 10^{-5}$

Macierz CKM - parametryzacje

 $\begin{bmatrix} |d'\rangle\\|s'\rangle\\|b'\rangle \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} |d\rangle\\|s\rangle\\|b\rangle \end{bmatrix}$

- Parametryzacja Wolfensteina (1983):
 - ✓ elementy macierzowe są rozwijane wzglądem $\sin \vartheta_i \equiv \lambda$;
 - ✓ pomiary rozpadów kaonów: $V_{us} = \lambda = 0.22$ i $V_{ud} = (1 \lambda^2/2)$
 - ✓ pomiar czasu życia mezonu *B*: $V_{cb} = 0.04 0.006 = A\lambda^2$
 - ✓ ustalamy, że V_{ud} , V_{us} , V_{tb} są liczbami rzeczywistymi funkcjami rzeczywistych parametrów : λ, Α, ρ, η
 - ✓ współczynniki zespolone to V_{ub} oraz V_{td} , a wyrazy w 3-ciej kolumnie (rzędzie) są małe $\sim A\lambda^3(\varrho i\eta)$
 - ✓ jedna faza jest mierzalna (CPV), zatem η nie może być zero

$$\begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A \lambda^3 (\rho - i\eta + i\eta \frac{\lambda^2}{2}) \\ -\lambda & 1 - \frac{\lambda^2}{2} - i\eta A \lambda^4 & A \lambda^2 (1 + i\eta \lambda^2) \\ A \lambda^3 (1 - \rho - i\eta) & -A \lambda^2 & 1 \end{pmatrix}$$

$$|V_{ub}|e^{-i\gamma}$$

Macierz CKM – wyższe rzędy

Parametryzacja Wolfensteina umożliwia uwzględnienie wyższych rzędów:

$$\begin{pmatrix} 1 - \frac{\lambda^2}{2} - \frac{\lambda^4}{8} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - A^2 \lambda^5(\rho + i\eta - \frac{1}{2}) & 1 - \frac{\lambda^2}{2} - (\frac{1}{8} + \frac{A}{2})\lambda^4 & A\lambda^2 \\ A\lambda^3[1 - (\rho + i\eta)(1 - \frac{\lambda^2}{2})] & -A\lambda^2 - A\lambda^4(\rho + i\eta - \frac{1}{2}) & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix} + \mathcal{O}(\lambda^6)$$

 β oraz β_s nazywane są słabymi fazami w mieszaniu B^0 i B_s^0 ,

 β oraz γ są kątami w trójkątach unitarności macierz CKM (see next slides).

To najważniejsze obserwable w fizyce ciężkich zapachów

Unitarność macierzy CKM

 $\begin{array}{cccc} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{array}$

• Macierz CKM jest unitarna $V_{CKM}^{-1} = V_{CKM}^{\dagger}$ - mamy zatem 12 warunków unitarności:

$$\begin{aligned} |V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} &= 1 \\ |V_{cd}|^{2} + |V_{cs}|^{2} + |V_{cb}|^{2} &= 1 \\ |V_{td}|^{2} + |V_{ts}|^{2} + |V_{tb}|^{2} &= 1 \end{aligned}$$

$$\begin{aligned} V_{ud}^{*} V_{cd} + V_{us}^{*} V_{cs} + V_{ub}^{*} V_{tb} &= 0 \\ V_{ud}^{*} V_{td} + V_{us}^{*} V_{ts} + V_{ub}^{*} V_{tb} &= 0 \\ V_{cd}^{*} V_{td} + V_{cs}^{*} V_{ts} + V_{cb}^{*} V_{tb} &= 0 \\ V_{cd}^{*} V_{td} + V_{cs}^{*} V_{ts} + V_{cb}^{*} V_{tb} &= 0 \\ V_{ud}^{*} V_{ud} + V_{cs}^{*} V_{ts} + V_{cb}^{*} V_{tb} &= 0 \\ V_{ud}^{*} V_{us} + V_{cd} V_{cs}^{*} + V_{td} V_{ts}^{*} &= 0 \\ V_{ud}^{*} V_{ub}^{*} + V_{cd} V_{cb}^{*} + V_{td} V_{tb}^{*} &= 0 \\ V_{ud}^{*} V_{ub}^{*} + V_{cd} V_{cb}^{*} + V_{td} V_{tb}^{*} &= 0 \\ V_{us}^{*} V_{ub}^{*} + V_{cs} V_{cb}^{*} + V_{ts} V_{tb}^{*} &= 0 \end{aligned}$$

The orthogonality conditions can be regarded as a triangle condition – CKM matrix elements are complex numbers, so their sum is simply a sum of three vectors:

Unitarność macierzy CKM

 $\begin{vmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{vmatrix}$

 But most of them have magnitudes of very different size and are currently useless from experimental point of view :

$V_{ud}^* V_{cd} + V_{us}^* V_{cs} + V_{ub}^* V_{cb} = 0$	λ, λ, λ ⁵
$V_{ud}^* V_{td} + V_{us}^* V_{ts} + V_{ub}^* V_{tb} = 0$	$\lambda^3, \lambda^3, \lambda^3$
$V_{cd}^* V_{td} + V_{cs}^* V_{ts} + V_{cb}^* V_{tb} = 0$	$\lambda^4, \lambda^2, \lambda^2$
$V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0$	$\lambda, \lambda, \lambda^5$
$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$	$\lambda^3, \lambda^3, \lambda^3$
$V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$	$\lambda^4, \lambda^2, \lambda^2$

The most attractive are two triangles:

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

$$V_{ud}^* V_{td} + V_{us}^* V_{ts} + V_{ub}^* V_{tb} = 0$$

Unitarność macierzy CKM

- $\begin{array}{cccc} 1 \lambda^2 / 2 & \lambda & A \lambda^3 (\rho i \eta) \\ \lambda & 1 \lambda^2 / 2 & A \lambda^2 \\ A \lambda^3 (1 \rho i \eta) & A \lambda^2 & 1 \end{array}$
- But most of them have magnitudes of very different size and are currently useless from experimental point of view :

 $V_{ud}^* V_{td} + V_{us}^* V_{ts} + V_{ub}^* V_{tb} = 0 \qquad \lambda^3, \, \lambda^3, \, \lambda^3$

 $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$ $\lambda^{3}, \lambda^{3}, \lambda^{3}$

"The" unitary triangle!

Using Wolfenstein parametrization, we can draw them on complex plane :

$$V_{ud}V_{ub}^* = A\lambda^3(1 - \lambda^2/2)(\varrho + i\eta)$$
$$V_{cd}V_{cb}^* = -A\lambda^3$$
$$V_{td}V_{tb}^* = A\lambda^3(1 - \varrho - i\eta)$$

if sides are divided by $V_{cd}V_{cb}^*$ the UT looks like that:

Trójkąt Unitarności (UT)

Try your vector algebra...

Drugi trójkąt unitarności

Try your vector algebra...

$$\begin{split} V_{ub}V_{tb}^* &= A\lambda^3(\varrho + i\eta) \\ V_{ud}V_{td}^* &= A\lambda^3(1 - \lambda^2/2)(1 - \varrho - i\eta) \\ V_{us}V_{ts}^* &= -A\lambda^3 \\ &\quad + \text{higher order...} \ \mathcal{O}(\lambda^4) \end{split}$$

 $-iA\lambda^4\eta$ precise measurements can

prove this!

λ

 $A\lambda^{3}(\rho-i\eta)$

 $1-\lambda^2/2$

 $A\lambda^{3}(1-\rho-i\eta)$ $-A\lambda^{2}$

 V_{cd} V_{cs}

.

 V_{cb}

10

agh.edu.pl

Mieszanie kwarków – oscylacje zapachu

 Najciekawszą konsekwencją mieszania kwarków w oddz. słabych są tzw. oscylacje zapachu, czyli przemiana neutralnych mezonów w swoje antycząski:

Ewolucja czasowa mezonów K⁰

- 1. Meson K^0 can decay into all, allowed by energy-momentum conservation, states.
- 2. The exponential decay law leads to the time dependence of the wave function:

which satisfy the equation:

$$|K^{0}(t)\rangle = |K^{0}\rangle e^{-\frac{\Gamma t}{2}} e^{-imt}$$
time evolution of a stable state with mass $m, m = E$
total width such that probability of finding an
undecayed meson at time t is:

$$i\frac{\partial}{\partial t}|K^{0}(t)\rangle = \left(m - \frac{i}{2}\Gamma\right)|K^{0}(t)\rangle$$

$$|\langle K^{0}(t)|K^{0}\rangle|^{2} = e^{-\Gamma t}$$

$$|K^{0}(t)\rangle = e^{-iHt} |K^{0}(t=0)\rangle = e^{-iHt} \frac{1}{\sqrt{2}} (|K^{0}_{s}\rangle + |K^{0}_{L}\rangle) =$$
$$= \frac{1}{\sqrt{2}} \left[e^{-i\left(m_{s} - \frac{i\Gamma_{s}}{2}\right)t} |K^{0}_{s}\rangle + e^{-i\left(m_{L} - \frac{i\Gamma_{L}}{2}\right)t} |K^{0}_{L}\rangle \right] = \dots = \dots = \dots$$

so let's be more general:

Model Standardowy - A. Obłąkowska-Mucha - AGH

Ewolucja czasowa neutralnych mezonów - ogólnie

1. The eigenstates of effective Hamiltonian (weak) written in the form:

 $|P_{1}\rangle = p|P^{0}\rangle + q|\overline{P^{0}}\rangle$ $|P_{2}\rangle = p|P^{0}\rangle - q|\overline{P^{0}}\rangle$

p and q are complex numbers satisfying: $|p|^2 + |q|^2 = 1$ (for K_1^0 and K_2^0 : $p = q = \frac{1}{\sqrt{2}}$)

2. Solving Schrödinger equation we see time evolution of the eigenstates:

 $|P_1(t)\rangle = |P_1\rangle e^{-i\left(m_1 - \frac{i\Gamma_1}{2}\right)t}$ $|P_2(t)\rangle = |P_2\rangle e^{-i\left(m_2 - \frac{i\Gamma_2}{2}\right)t}$

These relations show that the original P^0 meson after some time can either convert to $\overline{P^0}$ or decay.

Ewolucja czasowa neutralnych mezonów - ogólnie

9. Finally the time evolution of weak eigenstates as a combination of flavour eigenstates:

$$|P^{0}(t)\rangle = f_{+}(t)|P^{0}\rangle + \frac{q}{p}f_{-}(t)|\overline{P^{0}}\rangle$$

$$|\overline{P^{0}}(t)\rangle = f_{+}(t)|\overline{P^{0}}\rangle + \frac{p}{q}f_{-}(t)|P^{0}\rangle$$

$$f_{\pm}(t) = \frac{1}{2} \left[e^{-i(m_{1}-\frac{i}{2}\Gamma_{1})t} \pm e^{-i(m_{2}-\frac{i}{2}\Gamma_{2})t} \right]$$

$$|f_{\pm}(t)|^{2} = \frac{1}{4} \left[e^{-i\Gamma_{1}t} + e^{-i\Gamma_{2}t} \pm 2e^{-\overline{\Gamma}t}\cos(\Delta mt) \right]$$

$$\overline{\Gamma} = \frac{\Gamma_{1} + \Gamma_{2}}{2}$$
interference term
10. The time evolution of mixing probabilities, i.e. the probability
that having started the observation with a P^{0} meson, after some
time t we still have P^{0} (or it has oscillated to $\overline{P^{0}}$):
$$P(P^{0} \rightarrow \overline{P^{0}}; t) = |\langle \overline{P^{0}}|P^{0}(t)\rangle|^{2} = |f_{+}(t)|^{2}$$

$$P(P^{0} \rightarrow \overline{P^{0}}; t) = |\langle \overline{P^{0}}|P^{0}(t)\rangle|^{2} = \left|\frac{q}{p}f_{-}(t)\right|^{2}$$

Let's look closer at the parameters of flavour oscillations:

Łamanie parzystości CP w mieszaniu

- Weak interactions makes possible the change of quark flavour. This rule can do some magic transition from matter to antimatter:
- We found that having started the observation with a P⁰ meson, after some time t we can have P⁰ (P⁰ has oscillated to P⁰)!
- SM and V_{CKM} provide us with the parameters of oscillations

Trzy typy łamania parzystości CP

I. CP violation in decay (direct CP Violation)

II. CP violation in mixing (indirect CP Violation)

Jak znaleźć CPV?

- Obserwacja CPV polega na porównaniu szybkości rozpadu (decay rate, czyli liczby rozpadów na czas) $\Gamma(P \to f) \ge \Gamma(\overline{P}) \to \overline{f}$
- Jest to pośrednie łamanie \mathcal{CP} w mieszaniu neutralnych mezonów
- Definiujemy asymetrię pomiędzy rozpadami neutralnych stanów *CP* sprzężonych:

$$A_{CP}(t) = \frac{\Gamma\{B(t) \to f\} - \Gamma\{\overline{B}(t) \to \overline{f}\}}{\Gamma\{B(t) \to f\} + \Gamma\{\overline{B}(t) \to \overline{f}\}}$$

gdzie: $\Gamma(P \to f) \propto |A_f|^2$

Amplituda A_f jest zdefiniowana jako element macierzowy, który opisuje przejście pomiędzy stanem P i f, takim, że:

 $P \rightarrow f$ opisywane jest przez $A_f = \langle f | H | P \rangle$

 $\overline{P} \rightarrow f$ przez: $\overline{A_f} = \langle f | H | \overline{P} \rangle$

1. The weak B-meson states are a combination of flavour states:

 $|B_L\rangle = p|B^0\rangle + q|\overline{B^0}\rangle \qquad |B_H\rangle = p|B^0\rangle - q|\overline{B^0}\rangle$

2. In terms of the CKM elements q/p is given by:

1. The physical states are written as:

$$\begin{split} |B_L\rangle &= 1/\sqrt{2} \left[|B^0\rangle + e^{-i2\beta} |\overline{B^0}\rangle \right] \\ |B_H\rangle &= 1/\sqrt{2} \left[|B^0\rangle - e^{-i2\beta} |\overline{B^0}\rangle \right] \end{split}$$

the eigenstates of the effective Hamiltonian $|B_{L,H}\rangle$, with definite mass and lifetime, are mixtures of the flavour eigenstates $|B^0\rangle$ and $\overline{B^0}\rangle$

and β is also called the **B**⁰ mixing phase

3. The states B_L and B_H are lighter and heavier state, with almost identical lifetimes: $\Gamma_L = \Gamma_H \equiv \Gamma$

4. The mass difference Δm between them is greater then in kaons.

5. If we write the flavour states as a combination of weak states:

 $|B^{0}\rangle = 1/\sqrt{2} \left[|B_{L}\rangle + |B_{H}\rangle\right]$

then the wavefunction evolves according to the time dependence of physical states:

 $|B(t)\rangle = 1/\sqrt{2}\{a(t)|B_L\rangle + b(t)|B_H\rangle\}$

where time dependence of coefficients is:

$$\boldsymbol{a}(\boldsymbol{t}) = e^{-i(m_L - \frac{i}{2}\Gamma)t} \qquad \boldsymbol{b}(\boldsymbol{t}) = e^{-i(m_H - \frac{i}{2}\Gamma)t}$$

Now substitute a(t) and b(t) and $|B_{L,H}\rangle$ into time-dependent wave function. Do not forget to express mass states as a combination of flavour states....

$$\begin{split} |B_L\rangle &= 1/\sqrt{2} \left[|B^0\rangle + e^{-i2\beta} |\overline{B^0}\rangle \right] \\ |B_H\rangle &= 1/\sqrt{2} \left[|B^0\rangle - e^{-i2\beta} |\overline{B^0}\rangle \right] \end{split}$$

6. Now substitute a(t) and b(t) and $|B_{L,H}\rangle$ into time-dependent wave function:

$$|B(t)\rangle = 1/\sqrt{2}\{a(t)|B_L\rangle + b(t)|B_H\rangle\}$$

$$a(t) = e^{-i(m_L - \frac{i}{2}\Gamma)t} \qquad b(t) = e^{-i(m_H - \frac{i}{2}\Gamma)t}$$

$$\begin{split} |B_L\rangle &= 1/\sqrt{2} \left[|B^0\rangle + e^{-i2\beta} |\overline{B^0}\rangle \right] \\ |B_H\rangle &= 1/\sqrt{2} \left[|B^0\rangle - e^{-i2\beta} |\overline{B^0}\rangle \right] \end{split}$$

.... and calculate the probabilities of the state to stay as a $|B^0\rangle$

$$P(B^{0}(t=0) \rightarrow B^{0};t) = |\langle B^{0}(t)|B^{0}\rangle|^{2} = ... = e^{-\Gamma t} \cos^{2}\left(\frac{\Delta m}{2}t\right)$$

7. The same calculation can be done for B_S^0

Oscylować mogą neutrane mezony, jak:

$$\begin{pmatrix} B^0 = d\bar{b} \\ \overline{B^0} = \bar{d}b \end{pmatrix} \qquad \begin{pmatrix} B_S^0 = s\bar{b} \\ \overline{B_S^0} = \bar{d}s \end{pmatrix}$$

Najczęściej wymieniany jest najcięższy kwark, czyli t.

 $A \propto \sum$ all pair of quarks $A_{bi}A_{jb}^*$

 M_{12}^{*}

 M_{12}

Doświadczalnie:	$B^0 = d\overline{b} \ \overline{B^0} = \overline{d}b$	$B_S^0 = s\overline{b} \ \overline{B_S^0} = \overline{d}s$	
Parametry oscylacji	$x_d = \frac{\Delta m_d}{\overline{\Gamma_d}} \approx 0.72$	$x_s = \frac{\Delta m_s}{\overline{\Gamma_s}} \approx 24$	
Różnica mas (duża)	$\begin{array}{l} \Delta m_d \approx 3.3 \cdot 10^{-13} \; GeV \\ \approx 0.5 \; ps^{-1} \end{array}$	$\Delta m_s \approx 17.8 \ ps^{-1}$	
Różnica czasów życia (mała)	$x_d = \frac{\Delta \Gamma_d}{\overline{\Gamma_d}} \approx 5 \cdot 10^{-3}$	$x_d = \frac{\Delta \Gamma_s}{\overline{\Gamma_s}} \approx 0.1$	
$\frac{q}{p}$ - czuły naCPV	$\frac{q}{p} = \frac{V_{td}V_{tb}^*}{V_{tb}V_{td}^*} \sim \beta$	$\frac{q}{p} = \frac{V_{ts}V_{tb}^*}{V_{tb}V_{ts}^*} \sim \beta_s$	$\frac{q}{p} =$

Jak znaleźć CPV?

LHCb: $\Delta m_S = 17.768 \pm 0.023 \ ps^{-1}$

$$\Gamma(B \to J/\psi \ K_S) = \left| Ae^{-imt - \Gamma t} \left(\cos \frac{\Delta m t}{2} + e^{-i\phi} \sin \frac{\Delta m t}{2} \right) \right|^2$$

$$A_{CP}(t) = \frac{\Gamma\{B \to J/\psi \ K_S\} - \Gamma\{\overline{B} \to J/\psi \ K_S\}}{\Gamma\{B \to J/\psi \ K_S\} + \Gamma\{\overline{B} \to J/\psi \ K_S\}} = -\sin 2\beta \sin \Delta mt$$