
Standard Model

I. Dirac Equation & Antiparticles

Agnieszka Obłąkowska-Mucha
AGH UST Kraków

AGH UST Kraków 1



Schrödinger equation 
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▪ Consider non-relativistic particle of mass 𝒎 in a potential 𝑈: 𝐸 =
𝑝2

2𝑚
+ 𝑈

▪ Then substitute the energy and momentum operators: Ԧ𝑝 → −𝑖𝛻, 𝐸 → 𝑖
𝜕

𝜕𝑡

▪ What gives the non-relativistic Schrödinger equation: −
𝛻2

2𝑚
+ 𝑈 𝛹 = 𝑖

𝜕𝛹

𝜕𝑡

▪ The solution for the free particle (𝑈 = 0): 𝛹 Ԧ𝑥, 𝑡 ∝ 𝑒−𝑖𝐸𝑡 𝜓( Ԧ𝑥)

▪ For a relativistic particles space and time should be treated equally.

▪ For a relativistic particle the energy-momentum relationship is: 𝐸2 − 𝑝2 = 𝑚2 and covariant: 𝑝𝜇𝑝𝜇 − 𝑚2 = 0

▪ Substituting the energy and momentum operators we have Klein-Gordon equation: −
𝜕2

𝜕𝑡2 𝛹 + 𝛻2𝛹 = 𝑚2𝛹

     also written in the Lorentz covariant way:   −𝜕𝜇𝜕𝜇 − 𝑚2 𝜓 = 0

▪ The free particle solutions are plane waves: 𝛹 Ԧ𝑥, 𝑡 ∝ 𝑒−𝑖(𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥)

▪ With positive and negative energy solutions: 𝐸 = ± 𝑝2 − 𝑚2

The Schrödinger equation is 1st order in 
𝝏

𝝏𝒕
but second in 

𝝏

𝝏𝒙
.

The Klein-Gordon equation is Lorentz invariant but gives the negative energy solutions. And describes only bosons.

𝜕𝜇 ≡
𝜕

𝜕𝑥𝜇
=

𝜕

𝜕𝑡
,

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
 

𝜕𝜇 ≡
𝜕

𝜕𝑥𝜇
=

𝜕

𝜕𝑡
, −

𝜕

𝜕𝑥
, −

𝜕

𝜕𝑦
, −

𝜕

𝜕𝑧



Dirac equation  
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▪ Dirac (1928) formulated the alternative wave equation for relativistic particles as simple „square root” of the Klein-Gordon (K-G) 

equation:         𝑖𝛾0 𝜕

𝜕𝑡
+ 𝑖 Ԧ𝛾 ∙ ∇ − 𝑚 𝜓 = 0

 or in shorter notation: 

 where: 𝛾𝜇 = 𝛾0, 𝛾1, 𝛾2, 𝛾3 are unknown coefficients to be defined….

▪ To find how the 𝜸𝝁 should look like, first multiply the Dirac equation by its conjugate equation:

𝜓† −𝑖𝛾0 𝜕

𝜕𝑡
− 𝑖 Ԧ𝛾 ∙ ∇ − 𝑚 𝑖𝛾0 𝜕

𝜕𝑡
+ 𝑖 Ԧ𝛾 ∙ ∇ − 𝑚 𝜓 = 0

 what should restore the K-G equation.

▪ This leads to the conditions on the 𝜸𝝁:

𝛾0 2 = 1 , 

𝛾𝑖 2
= −1 , 𝑖 = 1, 2, 3

𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 0 for 𝜇 ≠ 𝜈, 

 or in terms of anticommutation relation: 𝛾𝜇 , 𝛾𝜈 = 2𝑔𝜇𝜈

𝒊𝜸𝝁𝝏𝝁 − 𝒎 𝝍 = 𝟎

𝜕𝜇 ≡
𝜕

𝜕𝑥𝜇
=

𝜕

𝜕𝑡
,

𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
 

Dirac Equation in the covariant form

−
𝜕2

𝜕𝑡2 𝛹 + 𝛻2𝛹 = 𝑚2𝛹

Tutorial!



Dirac equation - 𝛾 matrices  
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One of the solutions (among many others) for the 𝜸𝝁 are 4x4 unitary matrices (Dirac-Pauli representation):

𝜤

−𝜤

𝛾0 =

1 0 0 0
0
0
0

1 0 0
0 − 1 0
0 0 − 1

𝝈𝟏

𝛾1 =

0 0 0 1
0
0

−1

1 1 0
−1 0 0
0 0 0

−𝝈𝟏

𝝈𝟐

𝛾2 =

0 0 0 − 𝑖
0
0

−𝑖

1 𝑖 0
𝑖 0 0
0 0 0

−𝝈𝟐

𝝈𝟑

𝛾3 =

0 0 1 0
0

−1
0

0 0 − 1
0 0 0
1 0 0

−𝝈𝟑

𝜸𝝁 are fixed matrices, 
𝝈𝒊: Pauli spin matrices (representation of the 1/2 spin operator)

The full version of Dirac Equation (DE):

𝒊𝜸𝝁𝝏𝝁 − 𝒎 𝝍 = 𝟎

remember about summation 
over repeated indices!

𝑖
𝜕

𝜕𝑡
− 𝑚  0 𝑖

𝜕

𝜕𝑧
 𝑖

𝜕

𝜕𝑥
+

𝜕

𝜕𝑦

0

−𝑖
𝜕

𝜕𝑧

−𝑖
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦

 𝑖
𝜕

𝜕𝑡
− 𝑚 𝑖

𝜕

𝜕𝑥
−

𝜕

𝜕𝑦
 − 𝑖

𝜕

𝜕𝑧

−𝑖
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
 − 𝑖

𝜕

𝜕𝑡
− 𝑚 0

 𝑖
𝜕

𝜕𝑧
 0 − 𝑖

𝜕

𝜕𝑡
− 𝑚

𝜓1

𝜓2

𝜓3

𝜓4

=

0
0
0
0

bi-spinor



Dirac equation - 𝛾 matrices  
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One of the solutions (among many others) for the 𝜸𝝁 are 4x4 unitary matrices (Dirac-Pauli representation):

𝛾0 =
1 0
0 −1

𝜸𝝁 are fixed matrices;
𝝈𝒊: Pauli spin matrices (representation of the 1/2 spin operator)

The full version of Dirac Equation (DE):

𝑖
𝜕

𝜕𝑡
− 𝑚  0 𝑖

𝜕

𝜕𝑧
 𝑖

𝜕

𝜕𝑥
+

𝜕

𝜕𝑦

0

−𝑖
𝜕

𝜕𝑧

−𝑖
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦

 𝑖
𝜕

𝜕𝑡
− 𝑚 𝑖

𝜕

𝜕𝑥
−

𝜕

𝜕𝑦
 − 𝑖

𝜕

𝜕𝑧

−𝑖
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
 − 𝑖

𝜕

𝜕𝑡
− 𝑚 0

 𝑖
𝜕

𝜕𝑧
 0 − 𝑖

𝜕

𝜕𝑡
− 𝑚

𝜓1

𝜓2

𝜓3

𝜓4

=

0
0
0
0

𝒊𝜸𝝁𝝏𝝁 − 𝒎 𝝍 = 𝟎

remember about summation 
over repeated indices!

bi-spinor

𝛾𝜇 =
0 𝝈𝝁

−𝝈𝝁 0

every element of 𝜸𝝁 matrices stands for 2x2 matrix,
1 denotes 2x2 unit matrix,
0 represents 2x2 null matrix



Dirac equation – solutions  
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It’s nice to remember what we wanted to obtain: a wavefunction of a relativistic particle.

Let’s write it now in the form of the plane wave and a Dirac spinor, 𝑢 𝑝𝜇 :

Substituting 𝜓 𝑥𝜇 into DE: 

▪ For a particle at rest, 𝒑 = 𝟎, spatial derivatives are 0, DE is in the form:

what can be expressed as an eigenvalue problem for the spinors 𝑢:

▪ The free-particle wavefunction is:      𝜓 = 𝑢 𝐸, 0 𝑒−𝑖𝐸𝑡

with the eigenspinors: 

𝜓 𝑥𝜇 = 𝑢 𝑝𝜇 𝑒−𝑖(𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥)

𝜸𝝁𝒑𝝁 − 𝒎 𝒖(𝑬, 𝒑) = 𝟎

𝑖𝛾0
𝜕

𝜕𝑡
− 𝑚 𝜓 = 0

𝒊𝜸𝝁𝝏𝝁 − 𝒎 𝝍 = 𝟎

𝛾0𝐸 − 𝑚 𝜓 = 0

𝐸𝑢 =
𝑚𝑰 0
0 −𝑚𝜤

𝑢

𝐸 = 𝑚 𝐸 = −𝑚

𝑢1 =

1
0
0
0

𝑢2 =

0
1
0
0

𝑢3 =

0
0
1
0

𝑢4 =

0
0
0
1

These four states are also 
eigenvalues of the መ𝑆𝑧 operator, so 
they represent spin-up and spin-
down fermions (why? - later).

spin up ↑
spin down ↓

Tutorial!

𝑝𝜇= 𝐸, Ԧ𝑝

𝑝𝜇 = 𝐸, − Ԧ𝑝

 𝑥𝜇= 𝑡, Ԧ𝑥

−𝑖𝑥𝜇𝑝𝜇 = −𝑖 𝐸𝑡 − Ԧ𝑝 ∙ Ԧ𝑥



Four solutions of the Dirac equation for a particle at rest:

describe two different state of a fermion (↑↓) with 𝐸 = 𝑚 and 𝐸 = −𝑚

Dirac equation – interpretation I  
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𝜓1 =

1
0
0
0

𝑒−𝑖𝑚𝑡 𝜓2 =

0
1
0
0

𝑒−𝑖𝑚𝑡 𝜓3 =

0
0
1
0

𝑒+𝑖𝑚𝑡 𝜓4 =

0
0
0
1

𝑒+𝑖𝑚𝑡

Dirac’s Interpretation:

• Vacuum (fully filled) represents a „sea” of negative energy particles.

• According to Dirac: holes in this „sea” represent antiparticles.

• If energy 2E is provided to the vacuum:

 one electron (negative charge, positive energy) and one hole (positive 
charge, negative energy are created.

• This picture fails for bosons!



Dirac equation – interpretation II 
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Stückelberg (1941)-Feynman (1948) interpretation of antiparticles*:

• consider the negative energy solution as running backwards in time

and re-label it as antiparticle, with positive energy, going forward in time:

𝑒−𝑖 −𝐸 −𝑡 −(− Ԧ𝑝)∙(− Ԧ𝑥) = 𝑒−𝑖 𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥

• emission of 𝐸 > 0 antiparticle = absorption of particle 𝐸 < 0
 

This involves a CPT transformation:
• we have flipped Charge (C),
• flipped time (T),
• and to prevent momentum from being flipped, must
 also flip the space coordinates (P)

*Feynman–Stueckelberg interpretation [Wikipedia]

By considering the propagation of the negative energy modes of the 

electron field backward in time, Ernst Stueckelberg reached a pictorial 

understanding of the fact that the particle and antiparticle have equal 

mass m and spin J but opposite charges q. This allowed him to 

rewrite perturbation theory precisely in the form of diagrams. Richard 

Feynman later gave an independent systematic derivation of these 

diagrams from a particle formalism, and they are now called Feynman 

diagrams. Each line of a diagram represents a particle propagating 

either backward or forward in time. This technique is the most 

widespread method of computing amplitudes in quantum field theory 

today.

Since this picture was first developed by Stueckelberg,[5] and acquired 

its modern form in Feynman's work,[6] it is called the Feynman–

Stueckelberg interpretation of antiparticles to honor both scientists.

https://en.wikipedia.org/wiki/Ernst_Stueckelberg
https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)
https://en.wikipedia.org/wiki/Richard_Feynman
https://en.wikipedia.org/wiki/Richard_Feynman
https://en.wikipedia.org/wiki/Feynman_diagram
https://en.wikipedia.org/wiki/Feynman_diagram
https://en.wikipedia.org/wiki/Antiparticle#cite_note-5
https://en.wikipedia.org/wiki/Antiparticle#cite_note-6


Dirac equation – general solution 
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• For a moving particle, 𝒑 ≠ 𝟎, the Dirac equation can be written using Pauli representation in DE

 using: 𝑖𝛾𝜇𝜕𝜇 − 𝑚 𝜓 = 0 , 𝛾0 =
𝐼 0
0 −𝐼

and 𝛾𝑖 =
0 𝜎𝑖

−𝜎𝑖 0

𝛾𝜇𝑝𝜇 − 𝑚 𝑢𝐴 𝑢𝐵 =
𝐸 − 𝑚 − Ԧ𝜎 ∙ Ԧ𝑝

Ԧ𝜎 ∙ Ԧ𝑝 −𝐸 − 𝑚

𝑢𝐴

𝑢𝐵
=

0
0

, where: 𝑢𝐴 =
𝑢1

𝑢2
, 𝑢𝐵 =

𝑢3

𝑢4
, 𝑢 =

𝑢1

𝑢2

𝑢3

𝑢4

• It seems that the equations for vectors 𝑢𝐴 and 𝑢𝐵 are coupled:

( Ԧ𝜎 ∙ Ԧ𝑝) 𝑢𝐵 = (𝐸 − 𝑚) 𝑢𝐴

( Ԧ𝜎 ∙ Ԧ𝑝) 𝑢𝐴 = (𝐸 + 𝑚) 𝑢𝐵

• Taking the two simplest solutions for 𝑢𝐴 and 𝑢𝐵 as the orthogonal vectors:

𝑢𝐴,𝐵=
1
0

and 𝑢𝐴,𝐵 =
0
1

 we obtain four orthogonal solutions to the free particle Dirac equation: 

𝜓𝑖 = 𝑢𝑖(𝐸, Ԧ𝑝)𝑒−𝑖(𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥)

𝑖𝛾𝜇𝜕𝜇 − 𝑚 𝜓 = 0

𝜓 𝑥𝜇 = 𝑢 𝑝𝜇 𝑒−𝑖(𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥)

𝛾𝜇𝑝𝜇 − 𝑚 𝑢(𝐸, Ԧ𝑝) = 0

4-component bi-spinor as 2-component vector

where:

Tutorial!

Tutorial!



Dirac equation – solutions for moving particles   
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𝑢1 =

1
0
𝑝𝑧

𝐸 + 𝑚
𝑝𝑥 + 𝑖𝑝𝑦

𝐸 + 𝑚

… where:

𝑢2 =

0
1

𝑝𝑥 − 𝑖𝑝𝑦

𝐸 + 𝑚
−𝑝𝑧

𝐸 + 𝑚

𝑢3 =

𝑝𝑧

𝐸 − 𝑚
𝑝𝑥 + 𝑖𝑝𝑦

𝐸 − 𝑚
1
0

𝑢4 =

𝑝𝑥 − 𝑖𝑝𝑦

𝐸 − 𝑚
−𝑝𝑧

𝐸 − 𝑚
0
1

electron with energy 

𝐸 = + 𝑚2 + 𝑝2

𝜓 = 𝑢1,2(𝑝𝜇) 𝑒−𝑖 𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥

positron with energy 

𝐸 = − 𝑚2 + 𝑝2

𝜓 = 𝑢3,4(𝑝𝜇) 𝑒−𝑖 𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥 𝑝𝜇= (𝐸, Ԧ𝑝)

Now we can take F-S interpretation of antiparticles as  particles with positive energy (propagating backwards in time), and 
change the negative energy solutions 𝑢3,4 to represent positive antiparticle (positron) spinors 𝑣1,2:

𝑣1(𝐸, Ԧ𝑝) 𝑒−𝑖 𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥 ≡ 𝑢4 −𝐸, − Ԧ𝑝 𝑒−𝑖 −𝐸𝑡+ Ԧ𝑝∙ Ԧ𝑥  = 𝑢4 −𝐸, − Ԧ𝑝 𝑒𝑖 𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥  

𝑣2(𝐸, Ԧ𝑝) 𝑒−𝑖 𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥 ≡ 𝑢3 −𝐸, − Ԧ𝑝 𝑒−𝑖 −𝐸𝑡+ Ԧ𝑝∙ Ԧ𝑥 = 𝑢3(−𝐸, − Ԧ𝑝)𝑒𝑖 𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥

The 𝑢 and 𝑣 are solutions of:

𝒊𝜸𝝁𝒑𝝁 − 𝒎 𝒖 = 𝟎  and 𝒊𝜸𝝁𝒑𝝁 + 𝒎 𝒗 = 𝟎 

reversing the sign 
of E and p

𝐸 = + 𝑚2 + 𝑝2



Dirac equation – solutions for moving particles   
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𝑢1 =

1
0
𝑝𝑧

𝐸 + 𝑚
𝑝𝑥 + 𝑖𝑝𝑦

𝐸 + 𝑚

… where:

𝑢2 =

0
1

𝑝𝑥 − 𝑖𝑝𝑦

𝐸 + 𝑚
−𝑝𝑧

𝐸 + 𝑚

𝑣2 =

𝑝𝑧

𝐸 + 𝑚
𝑝𝑥 + 𝑖𝑝𝑦

𝐸 + 𝑚
1
0

𝑣1 =

𝑝𝑥 − 𝑖𝑝𝑦

𝐸 + 𝑚
−𝑝𝑧

𝐸 + 𝑚
0
1

electron with energy 

𝐸 = + 𝑚2 + 𝑝2

𝜓 = 𝑢1,2(𝑝𝜇)𝑒−𝑖 𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥

positron with energy 

𝐸 = + 𝑚2 + 𝑝2

𝜓 = 𝑣1,2(𝑝𝜇) 𝑒𝑖 𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥

Now we can take F-S interpretation of antiparticles as  particles with positive energy (propagating backwards in time), and 
change the negative energy solutions to represent positive antiparticle (positron) spinors 𝑢3,4:

𝑣1(𝐸, Ԧ𝑝) 𝑒−𝑖 𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥 = 𝑢4(−𝐸, − Ԧ𝑝)𝑒−𝑖 −𝐸𝑡+ Ԧ𝑝∙ Ԧ𝑥

𝑣2(𝐸, Ԧ𝑝) 𝑒−𝑖 𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥 = 𝑢3(−𝐸, − Ԧ𝑝)𝑒−𝑖 −𝐸𝑡+ Ԧ𝑝∙ Ԧ𝑥

The 𝑢 and 𝑣 are solutions of:

𝒊𝜸𝝁𝒑𝝁 − 𝒎 𝒖 = 𝟎  and 𝒊𝜸𝝁𝒑𝝁 + 𝒎 𝒗 = 𝟎 

𝑝𝜇= (𝐸, Ԧ𝑝)

flipping the sign of E and p



Summary of Solutions of Dirac Equation   
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The normalised free particle solutions to the DE:

𝜓 = 𝑢(𝐸, Ԧ𝑝) 𝑒−𝑖 𝐸𝑡− Ԧ𝑝∙ Ԧ𝑥  satisfy 𝑖𝛾𝜇𝑝𝜇 − 𝑚 𝑢 = 0 

with: 

𝑢1 =

1
0
𝑝𝑧

𝐸 + 𝑚
𝑝𝑥 + 𝑖𝑝𝑦

𝐸 + 𝑚

𝑢2 =

0
1

𝑝𝑥 − 𝑖𝑝𝑦

𝐸 + 𝑚
−𝑝𝑧

𝐸 + 𝑚

The normalised free antiparticle solutions to the DE:

𝜓 = 𝑢(𝐸, Ԧ𝑝) 𝑒𝑖 𝐸𝑡+ Ԧ𝑝∙ Ԧ𝑥  satisfy 𝑖𝛾𝜇𝑝𝜇 + 𝑚 𝑢 = 0 

with: 

𝑣2 =

𝑝𝑧

𝐸 + 𝑚
𝑝𝑥 + 𝑖𝑝𝑦

𝐸 + 𝑚
1
0

𝑣1 =

𝑝𝑥 − 𝑖𝑝𝑦

𝐸 + 𝑚
−𝑝𝑧

𝐸 + 𝑚
0
1

▪ Both particle and antiparticle have positive energy solutions: 𝐸 = + 𝑚2 + 𝑝2.

▪ Particle and antiparticle have opposite spin: መ𝑆𝑣 = − መ𝑆

#P
ro

b
le

m
sA

re
O

k

Th

e main problem is:

we have no antiparticles….



Antiparticles? Where?  

AGH UST Kraków 13

Alpha Magnetic Spectrometer on ISS

AMS - II

No evidence for the original, “primordial” cosmic antimatter:
• Absence of anti-nuclei amongst cosmic rays in our galaxy
• Absence of intense γ−ray emission due to annihilation of distant galaxies in 

collision with antimatter



Antiparticles- history 
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1. Positron was discovered in 1933 by Anderson with usage of a 
Wilson cloud chamber.

2. Antiproton in 1955 at the Bevatron (a 6.5 GeV synchrotron in 
Berkeley)

3. Antineutron – 1956.

4. ANTI-HYDRODEN:
Produced in 1995 at the Low Energy Antiproton Ring (LEAR) at 
CERN

5. Searches of anti-nuclei in the space:
• Alpha Magnetic Spectrometer (AMS-01)
• Searches for anti-helium in cosmic rays – lots of He found but 

no anti-He!
• AMS-02 – extreme flux of positrons detected – consistent 

with e+e- annihilation, but some increase in high energies of 
unknown origin.



Antiparticles- why? 
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