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Schrödinger equation
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 Consider non-relativistic particle of mass 𝒎𝒎 in a potential 𝑈𝑈: 𝐸𝐸 = 𝑝𝑝2

2𝑚𝑚
+ 𝑈𝑈

 Then substitute the energy and momentum operators: 𝑝⃗𝑝 → −𝑖𝑖𝑖𝑖, 𝐸𝐸 → 𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕

 What gives the non-relativistic Schrödinger equation: − 𝛻𝛻2

2𝑚𝑚
+ 𝑈𝑈 𝛹𝛹 = 𝑖𝑖 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

 The solution for the free particle (𝑈𝑈 = 0): 𝛹𝛹 𝑥⃗𝑥, 𝑡𝑡 ∝ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝜓𝜓(𝑥⃗𝑥)

 For a relativistic particles space and time should be treated equally.

 For a relativistic particle the energy-momentum relationship is: 𝐸𝐸2 − 𝑝𝑝2 = 𝑚𝑚2 and covariant: 𝑝𝑝𝜇𝜇𝑝𝑝𝜇𝜇 − 𝑚𝑚2 = 0

 Substituting the energy and momentum operators we have Klein-Gordon equation: − 𝜕𝜕2

𝜕𝜕𝜕𝜕2
𝛹𝛹 + 𝛻𝛻2𝛹𝛹 = 𝑚𝑚2𝛹𝛹

also written in the Lorentz covariant way:   −𝜕𝜕𝜇𝜇𝜕𝜕𝜇𝜇 − 𝑚𝑚2 𝜓𝜓 = 0

 The free particle solutions are plane waves: 𝛹𝛹 𝑥⃗𝑥, 𝑡𝑡 ∝ 𝑒𝑒−𝑖𝑖(𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥)

 With positive and negative energy solutions: 𝐸𝐸 = ± 𝑝𝑝2 − 𝑚𝑚2

The Schrödinger equation is 1st order in 𝝏𝝏
𝝏𝝏𝝏𝝏

but second in 𝝏𝝏
𝝏𝝏𝝏𝝏

.

The Klein-Gordon equation is Lorentz invariant but gives the negative energy solutions. And describes only bosons.

𝜕𝜕𝜇𝜇 ≡
𝜕𝜕
𝜕𝜕𝑥𝑥𝜇𝜇

=
𝜕𝜕
𝜕𝜕𝑡𝑡

,
𝜕𝜕
𝜕𝜕𝑥𝑥

,
𝜕𝜕
𝜕𝜕𝑦𝑦

,
𝜕𝜕
𝜕𝜕𝑧𝑧

𝜕𝜕𝜇𝜇 ≡
𝜕𝜕
𝜕𝜕𝑥𝑥𝜇𝜇

=
𝜕𝜕
𝜕𝜕𝑡𝑡

,−
𝜕𝜕
𝜕𝜕𝑥𝑥

,−
𝜕𝜕
𝜕𝜕𝑦𝑦

,−
𝜕𝜕
𝜕𝜕𝑧𝑧



Dirac equation
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 Dirac (1928) formulated the alternative wave equation for relativistic particles as simple „square root” of the Klein-Gordon (K-G) 
equation: 𝑖𝑖𝛾𝛾0 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑖𝑖𝛾⃗𝛾 � ∇ − 𝑚𝑚 𝜓𝜓 = 0

or in shorter notation: 

where: 𝛾𝛾𝜇𝜇 = 𝛾𝛾0, 𝛾𝛾1, 𝛾𝛾2, 𝛾𝛾3 are unknown coefficients to be defined….

 To find how the 𝜸𝜸𝝁𝝁 should look like, first multiply the Dirac equation by its conjugate equation:

𝜓𝜓† −𝑖𝑖𝛾𝛾0 𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑖𝑖𝛾⃗𝛾 � ∇ − 𝑚𝑚 𝑖𝑖𝛾𝛾0 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑖𝑖𝛾⃗𝛾 � ∇ − 𝑚𝑚 𝜓𝜓 = 0

what should restore the K-G equation.
 This leads to the conditions on the 𝜸𝜸𝝁𝝁:

𝛾𝛾0 2 = 1 , 

𝛾𝛾𝑖𝑖 2 = −1 , 𝑖𝑖 = 1, 2, 3
𝛾𝛾𝜇𝜇𝛾𝛾𝜈𝜈 + 𝛾𝛾𝜈𝜈𝛾𝛾𝜇𝜇 = 0 for 𝜇𝜇 ≠ 𝜈𝜈, 
or in terms of anticommutation relation: 𝛾𝛾𝜇𝜇 , 𝛾𝛾𝜈𝜈 = 2𝑔𝑔𝜇𝜇𝜇𝜇

𝒊𝒊𝜸𝜸𝝁𝝁𝝏𝝏𝝁𝝁 −𝒎𝒎 𝝍𝝍 = 𝟎𝟎

𝜕𝜕𝜇𝜇 ≡
𝜕𝜕
𝜕𝜕𝑥𝑥𝜇𝜇

=
𝜕𝜕
𝜕𝜕𝑡𝑡

,
𝜕𝜕
𝜕𝜕𝑥𝑥

,
𝜕𝜕
𝜕𝜕𝑦𝑦

,
𝜕𝜕
𝜕𝜕𝑧𝑧

Dirac Equation in the covariant form

− 𝜕𝜕2

𝜕𝜕𝜕𝜕2
𝛹𝛹 + 𝛻𝛻2𝛹𝛹 = 𝑚𝑚2𝛹𝛹

Tutorial!



Dirac equation - 𝛾𝛾 matrices  
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One of the solutions (among many others) for the 𝜸𝜸𝝁𝝁 are 4x4 unitary matrices (Dirac-Pauli representation):

𝜤𝜤

−𝜤𝜤

𝛾𝛾0 =
1 0 0 0
0
0
0

1 0 0
0 − 1 0
0 0 − 1

𝝈𝝈𝟏𝟏

𝛾𝛾1 =
0 0 0 1
0
0
−1

1 1 0
−1 0 0
0 0 0

−𝝈𝝈𝟏𝟏

𝝈𝝈𝟐𝟐

𝛾𝛾2 =
0 0 0 − 𝑖𝑖
0
0
−𝑖𝑖

1 𝑖𝑖 0
𝑖𝑖 0 0
0 0 0

−𝝈𝝈𝟐𝟐

𝝈𝝈𝟑𝟑

𝛾𝛾3 =
0 0 1 0
0
−1
0

0 0 − 1
0 0 0
1 0 0

−𝝈𝝈𝟑𝟑

𝜸𝜸𝝁𝝁 are fixed matrices, 
𝝈𝝈𝒊𝒊: Pauli spin matrices (representation of the 1/2 spin operator)

The full version of Dirac Equation (DE):

𝒊𝒊𝜸𝜸𝝁𝝁𝝏𝝏𝝁𝝁 −𝒎𝒎 𝝍𝝍 = 𝟎𝟎
remember about summation

over repeated indices!

𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
− 𝑚𝑚 0 𝑖𝑖

𝜕𝜕
𝜕𝜕𝑧𝑧

𝑖𝑖
𝜕𝜕
𝜕𝜕𝑥𝑥

+
𝜕𝜕
𝜕𝜕𝑦𝑦

0

−𝑖𝑖
𝜕𝜕
𝜕𝜕𝑧𝑧

−𝑖𝑖
𝜕𝜕
𝜕𝜕𝑧𝑧

+
𝜕𝜕
𝜕𝜕𝑦𝑦

𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
− 𝑚𝑚 𝑖𝑖

𝜕𝜕
𝜕𝜕𝑥𝑥

−
𝜕𝜕
𝜕𝜕𝑦𝑦

− 𝑖𝑖
𝜕𝜕
𝜕𝜕𝑧𝑧

−𝑖𝑖
𝜕𝜕
𝜕𝜕𝑥𝑥

+
𝜕𝜕
𝜕𝜕𝑦𝑦

− 𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
− 𝑚𝑚 0

𝑖𝑖
𝜕𝜕
𝜕𝜕𝑧𝑧

0 − 𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
− 𝑚𝑚

𝜓𝜓1

𝜓𝜓2

𝜓𝜓3

𝜓𝜓4

=

0
0
0
0

bi-spinor



Dirac equation - 𝛾𝛾 matrices  
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One of the solutions (among many others) for the 𝜸𝜸𝝁𝝁 are 4x4 unitary matrices (Dirac-Pauli representation):

𝛾𝛾0 = 1 0
0 −1

𝜸𝜸𝝁𝝁 are fixed matrices;
𝝈𝝈𝒊𝒊: Pauli spin matrices (representation of the 1/2 spin operator)

The full version of Dirac Equation (DE):

𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
− 𝑚𝑚 0 𝑖𝑖

𝜕𝜕
𝜕𝜕𝑧𝑧

𝑖𝑖
𝜕𝜕
𝜕𝜕𝑥𝑥

+
𝜕𝜕
𝜕𝜕𝑦𝑦

0

−𝑖𝑖
𝜕𝜕
𝜕𝜕𝑧𝑧

−𝑖𝑖
𝜕𝜕
𝜕𝜕𝑧𝑧

+
𝜕𝜕
𝜕𝜕𝑦𝑦

𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
− 𝑚𝑚 𝑖𝑖

𝜕𝜕
𝜕𝜕𝑥𝑥

−
𝜕𝜕
𝜕𝜕𝑦𝑦

− 𝑖𝑖
𝜕𝜕
𝜕𝜕𝑧𝑧

−𝑖𝑖
𝜕𝜕
𝜕𝜕𝑥𝑥

+
𝜕𝜕
𝜕𝜕𝑦𝑦

− 𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
− 𝑚𝑚 0

𝑖𝑖
𝜕𝜕
𝜕𝜕𝑧𝑧

0 − 𝑖𝑖
𝜕𝜕
𝜕𝜕𝑡𝑡
− 𝑚𝑚

𝜓𝜓1

𝜓𝜓2

𝜓𝜓3

𝜓𝜓4

=

0
0
0
0

𝒊𝒊𝜸𝜸𝝁𝝁𝝏𝝏𝝁𝝁 −𝒎𝒎 𝝍𝝍 = 𝟎𝟎
remember about summation

over repeated indices!

bi-spinor

𝛾𝛾𝜇𝜇 = 0 𝝈𝝈𝝁𝝁
−𝝈𝝈𝝁𝝁 0

every element of 𝜸𝜸𝝁𝝁 matrices stands for 2x2 matrix,
1 denotes 2x2 unit matrix,
0 represents 2x2 null matrix



Dirac equation – solutions
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It’s nice to remember what we wanted to obtain: a wavefunction of a relativistic particle.
Let’s write it now in the form of the plane wave and a Dirac spinor, 𝑢𝑢 𝑝𝑝𝜇𝜇 :

Substituting 𝜓𝜓 𝑥𝑥𝜇𝜇 into DE: 

 For a particle at rest, 𝒑𝒑 = 𝟎𝟎, spatial derivatives are 0, DE is in the form:

what can be expressed as an eigenvalue problem for the spinors 𝑢𝑢:

 The free-particle wavefunction is:      𝜓𝜓 = 𝑢𝑢 𝐸𝐸, 0 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

with the eigenspinors: 

𝜓𝜓 𝑥𝑥𝜇𝜇 = 𝑢𝑢 𝑝𝑝𝜇𝜇 𝑒𝑒−𝑖𝑖(𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥)

𝜸𝜸𝝁𝝁𝒑𝒑𝝁𝝁 −𝒎𝒎 𝒖𝒖(𝑬𝑬,𝒑𝒑) = 𝟎𝟎

𝑖𝑖𝛾𝛾0
𝜕𝜕
𝜕𝜕𝑡𝑡
− 𝑚𝑚 𝜓𝜓 = 0

𝒊𝒊𝜸𝜸𝝁𝝁𝝏𝝏𝝁𝝁 −𝒎𝒎 𝝍𝝍 = 𝟎𝟎

𝛾𝛾0𝐸𝐸 − 𝑚𝑚 𝜓𝜓 = 0

�𝐸𝐸𝑢𝑢 = 𝑚𝑚𝑰𝑰 0
0 −𝑚𝑚𝜤𝜤 𝑢𝑢 𝐸𝐸

1 0 0 0
0
0
1

1 0 0
0 − 1 0
0 0 − 1

𝜙𝜙1
𝜙𝜙2
𝜙𝜙3
𝜙𝜙4

= 𝑚𝑚

𝜙𝜙1
𝜙𝜙2
𝜙𝜙3
𝜙𝜙4

𝐸𝐸 = 𝑚𝑚 𝐸𝐸 = −𝑚𝑚

𝑢𝑢1 =

1
0
0
0

𝑢𝑢2 =

0
1
0
0

𝑢𝑢3 =

0
0
1
0

𝑢𝑢4 =

0
0
0
1

These four states are also 
eigenvalues of the 𝑆̂𝑆𝑧𝑧 operator, so 
they represent spin-up and spin-
down fermions (why? - later).

spin up ↑
spin down ↓

Tutorial!

𝑝𝑝𝜇𝜇= 𝐸𝐸, 𝑝⃗𝑝

𝑝𝑝𝜇𝜇 = 𝐸𝐸,−𝑝⃗𝑝

𝑥𝑥𝜇𝜇= 𝑡𝑡, 𝑥⃗𝑥

−𝑖𝑖𝑥𝑥𝜇𝜇𝑝𝑝𝜇𝜇 = −𝑖𝑖 𝐸𝐸𝐸𝐸 − 𝑝⃗𝑝 � 𝑥⃗𝑥



Four solutions of the Dirac equation for a particle at rest:

describe two different state of a fermion (↑↓) with 𝐸𝐸 = 𝑚𝑚 and 𝐸𝐸 = −𝑚𝑚

Dirac equation – interpretation I  
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𝜓𝜓1 =

1
0
0
0

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝜓𝜓2 =

0
1
0
0

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝜓𝜓3 =

0
0
1
0

𝑒𝑒+𝑖𝑖𝑖𝑖𝑖𝑖 𝜓𝜓4 =

0
0
0
1

𝑒𝑒+𝑖𝑖𝑖𝑖𝑖𝑖

Dirac’s Interpretation:
• Vacuum (fully filled) represents a „sea” of negative energy particles.
• According to Dirac: holes in this „sea” represent antiparticles.
• If energy 2E is provided to the vacuum:

one electron (negative charge, positive energy) and one hole (positive 
charge, negative energy are created.

• This picture fails for bosons!



Dirac equation – interpretation II 
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Stückelberg (1941)-Feynman (1948) interpretation of antiparticles*:
• consider the negative energy solution as running backwards in time

and re-label it as antiparticle, with positive energy, going forward in time:

𝑒𝑒−𝑖𝑖 −𝐸𝐸 −𝑡𝑡 −(−𝑝⃗𝑝)�(−𝑥⃗𝑥) = 𝑒𝑒−𝑖𝑖 𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥

• emission of 𝐸𝐸 > 0 antiparticle = absorption of particle 𝐸𝐸 < 0

This involves a CPT transformation:
• we have flipped Charge (C),
• flipped time (T),
• and to prevent momentum from being flipped, must

also flip the space coordinates (P)

*Feynman–Stueckelberg interpretation [Wikipedia]
By considering the propagation of the negative energy modes of the 
electron field backward in time, Ernst Stueckelberg reached a pictorial 
understanding of the fact that the particle and antiparticle have equal 
mass m and spin J but opposite charges q. This allowed him to 
rewrite perturbation theory precisely in the form of diagrams. Richard 
Feynman later gave an independent systematic derivation of these 
diagrams from a particle formalism, and they are now called Feynman 
diagrams. Each line of a diagram represents a particle propagating 
either backward or forward in time. This technique is the most 
widespread method of computing amplitudes in quantum field theory 
today.
Since this picture was first developed by Stueckelberg,[5] and acquired 
its modern form in Feynman's work,[6] it is called the Feynman–
Stueckelberg interpretation of antiparticles to honor both scientists.

https://en.wikipedia.org/wiki/Ernst_Stueckelberg
https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)
https://en.wikipedia.org/wiki/Richard_Feynman
https://en.wikipedia.org/wiki/Feynman_diagram
https://en.wikipedia.org/wiki/Antiparticle#cite_note-5
https://en.wikipedia.org/wiki/Antiparticle#cite_note-6


Dirac equation – general solution
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• For a moving particle, 𝒑𝒑 ≠ 𝟎𝟎, the Dirac equation can be written using Pauli representation in DE

using: 𝑖𝑖𝛾𝛾𝜇𝜇𝜕𝜕𝜇𝜇 − 𝑚𝑚 𝜓𝜓 = 0 , 𝛾𝛾0 = 𝐼𝐼 0
0 −𝐼𝐼 and 𝛾𝛾𝑖𝑖 = 0 𝜎𝜎𝑖𝑖

−𝜎𝜎𝑖𝑖 0

𝛾𝛾𝜇𝜇𝑝𝑝𝜇𝜇 − 𝑚𝑚 𝑢𝑢𝐴𝐴 𝑢𝑢𝐵𝐵 = 𝐸𝐸 −𝑚𝑚 −𝜎⃗𝜎 � 𝑝⃗𝑝
𝜎⃗𝜎 � 𝑝⃗𝑝 −𝐸𝐸 −𝑚𝑚

𝑢𝑢𝐴𝐴
𝑢𝑢𝐵𝐵 = 0

0 , where: 𝑢𝑢𝐴𝐴 =
𝑢𝑢1
𝑢𝑢2 , 𝑢𝑢𝐵𝐵 =

𝑢𝑢3
𝑢𝑢4 , 𝑢𝑢 =

𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
𝑢𝑢4

• It seems that the equations for vectors 𝑢𝑢𝐴𝐴 and 𝑢𝑢𝐵𝐵 are coupled:

(𝜎⃗𝜎 � 𝑝⃗𝑝) 𝑢𝑢𝐵𝐵 = (𝐸𝐸 −𝑚𝑚) 𝑢𝑢𝐴𝐴
(𝜎⃗𝜎 � 𝑝⃗𝑝) 𝑢𝑢𝐴𝐴 = (𝐸𝐸 + 𝑚𝑚) 𝑢𝑢𝐵𝐵

• Taking the two simplest solutions for 𝑢𝑢𝐴𝐴 and 𝑢𝑢𝐵𝐵 as the orthogonal vectors:

𝑢𝑢𝐴𝐴,𝐵𝐵= 1
0 and 𝑢𝑢𝐴𝐴,𝐵𝐵 = 0

1
we obtain four orthogonal solutions to the free particle Dirac equation: 

𝜓𝜓𝑖𝑖 = 𝑢𝑢𝑖𝑖(𝐸𝐸, 𝑝⃗𝑝)𝑒𝑒−𝑖𝑖(𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥)

𝑖𝑖𝛾𝛾𝜇𝜇𝜕𝜕𝜇𝜇 − 𝑚𝑚 𝜓𝜓 = 0

𝜓𝜓 𝑥𝑥𝜇𝜇 = 𝑢𝑢 𝑝𝑝𝜇𝜇 𝑒𝑒−𝑖𝑖(𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥)

𝛾𝛾𝜇𝜇𝑝𝑝𝜇𝜇 − 𝑚𝑚 𝑢𝑢(𝐸𝐸, 𝑝⃗𝑝) = 0

4-component bi-spinor as 2-component vector

where:

Tutorial!

Tutorial!



Dirac equation – solutions for moving particles
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𝑢𝑢1 =

1
0
𝑝𝑝𝑧𝑧

𝐸𝐸 + 𝑚𝑚
𝑝𝑝𝑥𝑥 + 𝑖𝑖𝑝𝑝𝑦𝑦
𝐸𝐸 + 𝑚𝑚

… where:

𝑢𝑢2 =

0
1

𝑝𝑝𝑥𝑥 − 𝑖𝑖𝑝𝑝𝑦𝑦
𝐸𝐸 + 𝑚𝑚
−𝑝𝑝𝑧𝑧
𝐸𝐸 + 𝑚𝑚

𝑢𝑢3 =

𝑝𝑝𝑧𝑧
𝐸𝐸 − 𝑚𝑚
𝑝𝑝𝑥𝑥 + 𝑖𝑖𝑝𝑝𝑦𝑦
𝐸𝐸 − 𝑚𝑚

1
0

𝑢𝑢4 =

𝑝𝑝𝑥𝑥 − 𝑖𝑖𝑝𝑝𝑦𝑦
𝐸𝐸 − 𝑚𝑚
−𝑝𝑝𝑧𝑧
𝐸𝐸 − 𝑚𝑚

0
1

electron with energy

𝐸𝐸 = + 𝑚𝑚2 + 𝑝𝑝2

𝜓𝜓 = 𝑢𝑢1,2(𝑝𝑝𝜇𝜇) 𝑒𝑒−𝑖𝑖 𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥

positron with energy

𝐸𝐸 = − 𝑚𝑚2 + 𝑝𝑝2

𝜓𝜓 = 𝑢𝑢3,4(𝑝𝑝𝜇𝜇) 𝑒𝑒−𝑖𝑖 𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥 𝑝𝑝𝜇𝜇= (𝐸𝐸, 𝑝⃗𝑝)

Now we can take F-S interpretation of antiparticles as  particles with positive energy (propagating backwards in time), and 
change the negative energy solutions 𝑢𝑢3,4 to represent positive antiparticle (positron) spinors 𝑣𝑣1,2:

𝑣𝑣1(𝐸𝐸, 𝑝⃗𝑝) 𝑒𝑒−𝑖𝑖 𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥 ≡ 𝑢𝑢4 −𝐸𝐸,−𝑝⃗𝑝 𝑒𝑒−𝑖𝑖 −𝐸𝐸𝐸𝐸+𝑝⃗𝑝�𝑥⃗𝑥 = 𝑢𝑢4 −𝐸𝐸,−𝑝⃗𝑝 𝑒𝑒𝑖𝑖 𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥

𝑣𝑣2(𝐸𝐸, 𝑝⃗𝑝) 𝑒𝑒−𝑖𝑖 𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥 ≡ 𝑢𝑢3 −𝐸𝐸,−𝑝⃗𝑝 𝑒𝑒−𝑖𝑖 −𝐸𝐸𝐸𝐸+𝑝⃗𝑝�𝑥⃗𝑥 = 𝑢𝑢3(−𝐸𝐸,−𝑝⃗𝑝)𝑒𝑒𝑖𝑖 𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥

The 𝑢𝑢 and 𝑣𝑣 are solutions of:

𝒊𝒊𝜸𝜸𝝁𝝁𝒑𝒑𝝁𝝁 −𝒎𝒎 𝒖𝒖 = 𝟎𝟎 and 𝒊𝒊𝜸𝜸𝝁𝝁𝒑𝒑𝝁𝝁 + 𝒎𝒎 𝒗𝒗 = 𝟎𝟎

reversing the sign
of E and p

𝐸𝐸 = + 𝑚𝑚2 + 𝑝𝑝2



Dirac equation – solutions for moving particles
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𝑢𝑢1 =

1
0
𝑝𝑝𝑧𝑧

𝐸𝐸 + 𝑚𝑚
𝑝𝑝𝑥𝑥 + 𝑖𝑖𝑝𝑝𝑦𝑦
𝐸𝐸 + 𝑚𝑚

… where:

𝑢𝑢2 =

0
1

𝑝𝑝𝑥𝑥 − 𝑖𝑖𝑝𝑝𝑦𝑦
𝐸𝐸 + 𝑚𝑚
−𝑝𝑝𝑧𝑧
𝐸𝐸 + 𝑚𝑚

𝑣𝑣2 =

𝑝𝑝𝑧𝑧
𝐸𝐸 + 𝑚𝑚
𝑝𝑝𝑥𝑥 + 𝑖𝑖𝑝𝑝𝑦𝑦
𝐸𝐸 + 𝑚𝑚

1
0

𝑣𝑣1 =

𝑝𝑝𝑥𝑥 − 𝑖𝑖𝑝𝑝𝑦𝑦
𝐸𝐸 + 𝑚𝑚
−𝑝𝑝𝑧𝑧
𝐸𝐸 + 𝑚𝑚

0
1

electron with energy

𝐸𝐸 = + 𝑚𝑚2 + 𝑝𝑝2

𝜓𝜓 = 𝑢𝑢1,2(𝑝𝑝𝜇𝜇)𝑒𝑒−𝑖𝑖 𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥

positron with energy

𝐸𝐸 = + 𝑚𝑚2 + 𝑝𝑝2

𝜓𝜓 = 𝑣𝑣1,2(𝑝𝑝𝜇𝜇) 𝑒𝑒𝑖𝑖 𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥

Now we can take F-S interpretation of antiparticles as  particles with positive energy (propagating backwards in time), and 
change the negative energy solutions to represent positive antiparticle (positron) spinors 𝑢𝑢3,4:

𝑣𝑣1(𝐸𝐸, 𝑝⃗𝑝) 𝑒𝑒−𝑖𝑖 𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥 = 𝑢𝑢4(−𝐸𝐸,−𝑝⃗𝑝)𝑒𝑒−𝑖𝑖 −𝐸𝐸𝐸𝐸+𝑝⃗𝑝�𝑥⃗𝑥

𝑣𝑣2(𝐸𝐸, 𝑝⃗𝑝) 𝑒𝑒−𝑖𝑖 𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥 = 𝑢𝑢3(−𝐸𝐸,−𝑝⃗𝑝)𝑒𝑒−𝑖𝑖 −𝐸𝐸𝐸𝐸+𝑝⃗𝑝�𝑥⃗𝑥

The 𝑢𝑢 and 𝑣𝑣 are solutions of:

𝒊𝒊𝜸𝜸𝝁𝝁𝒑𝒑𝝁𝝁 −𝒎𝒎 𝒖𝒖 = 𝟎𝟎 and 𝒊𝒊𝜸𝜸𝝁𝝁𝒑𝒑𝝁𝝁 + 𝒎𝒎 𝒗𝒗 = 𝟎𝟎

𝑝𝑝𝜇𝜇= (𝐸𝐸, 𝑝⃗𝑝)

flipping the sign of E and p



Summary of Solutions of Dirac Equation

AGH UST Kraków 12

The normalised free particle solutions to the DE:

𝜓𝜓 = 𝑢𝑢(𝐸𝐸, 𝑝⃗𝑝) 𝑒𝑒−𝑖𝑖 𝐸𝐸𝐸𝐸−𝑝⃗𝑝�𝑥⃗𝑥 satisfy 𝑖𝑖𝛾𝛾𝜇𝜇𝑝𝑝𝜇𝜇 − 𝑚𝑚 𝑢𝑢 = 0
with:

𝑢𝑢1 =

1
0
𝑝𝑝𝑧𝑧

𝐸𝐸 + 𝑚𝑚
𝑝𝑝𝑥𝑥 + 𝑖𝑖𝑝𝑝𝑦𝑦
𝐸𝐸 + 𝑚𝑚

𝑢𝑢2 =

0
1

𝑝𝑝𝑥𝑥 − 𝑖𝑖𝑝𝑝𝑦𝑦
𝐸𝐸 + 𝑚𝑚
−𝑝𝑝𝑧𝑧
𝐸𝐸 + 𝑚𝑚

The normalised free antiparticle solutions to the DE:

𝜓𝜓 = 𝑢𝑢(𝐸𝐸, 𝑝⃗𝑝) 𝑒𝑒𝑖𝑖 𝐸𝐸𝐸𝐸+𝑝⃗𝑝�𝑥⃗𝑥 satisfy 𝑖𝑖𝛾𝛾𝜇𝜇𝑝𝑝𝜇𝜇 + 𝑚𝑚 𝑢𝑢 = 0
with:

𝑣𝑣2 =

𝑝𝑝𝑧𝑧
𝐸𝐸 + 𝑚𝑚
𝑝𝑝𝑥𝑥 + 𝑖𝑖𝑝𝑝𝑦𝑦
𝐸𝐸 + 𝑚𝑚

1
0

𝑣𝑣1 =

𝑝𝑝𝑥𝑥 − 𝑖𝑖𝑝𝑝𝑦𝑦
𝐸𝐸 + 𝑚𝑚
−𝑝𝑝𝑧𝑧
𝐸𝐸 + 𝑚𝑚

0
1

 Both particle and antiparticle have positive energy solutions: 𝐸𝐸 = + 𝑚𝑚2 + 𝑝𝑝2.

 Particle and antiparticle have opposite spin: 𝑆̂𝑆𝑣𝑣 = −𝑆̂𝑆

#P
ro
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re
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Antiparticles? Where?  
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Alpha Magnetic Spectrometer on ISS

AMS - II

No evidence for the original, “primordial” cosmic antimatter:
• Absence of anti-nuclei amongst cosmic rays in our galaxy
• Absence of intense γ−ray emission due to annihilation of distant galaxies in 

collision with antimatter



Antiparticles- history
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1. Positron was discovered in 1933 by Anderson with usage of a 
Wilson cloud chamber.

2. Antiproton in 1955 at the Bevatron (a 6.5 GeV synchrotron in 
Berkeley)

3. Antineutron – 1956.

4. ANTI-HYDRODEN:
Produced in 1995 at the Low Energy Antiproton Ring (LEAR) at 
CERN

5. Searches of anti-nuclei in the space:
• Alpha Magnetic Spectrometer (AMS-01)
• Searches for anti-helium in cosmic rays – lots of He found but 

no anti-He!
• AMS-02 – extreme flux of positrons detected – consistent 

with e+e- annihilation, but some increase in high energies of 
unknown origin.



Antiparticles- why? 
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