1. Heights of 25 -year-old men in a certain region have mean 69.75 inches and standard deviation 2.59 inches. These heights are approximately normally distributed. Sketch a qualitatively accurate graph of the density function for X .
a) Find the probability that a randomly selected 25 -year-old man is more than 69.75 inches tall.
b) Find the probability that a randomly selected 25 -year-old man is more than 72 inches tall.
2. The RV $Z$ has a standard normal distribution.
a) Find the value $Z *$ of Z so that $P(Z<z *)=0.0125$. The value $z *$ is a cuts off a left tail of area 0.0125 in the standard normal distribution,
b) Find the value $z *$ of Z so that $P(Z>z *)=0.0250$. The value $z *$ is a cuts off a right tail of area 0.0250 in the standard normal distribution,
c) Find the values $z a$ such that: $P(-z a<Z<z a)=0.68$ and $P(-z a<Z<z a)=0.95$ You need the statistical tables, see, for example, here.
3. The lifetimes of the tread of a certain automobile tire are normally distributed with mean $37,500 \mathrm{~km}$ and standard deviation $4,500 \mathrm{~km}$. Find the probability that the tread life of a randomly selected tire will be between 30,000 and $40,000 \mathrm{~km}$.
4. The final exam scores in a statistics class were normally distributed with a mean of 63 and a standard deviation of five.
a) Find the probability that a randomly selected student scored more than 65 on the exam.
b) Find the probability that a randomly selected student scored less than 80
c) Find the 90 th percentile (that is, find the score k that has $90 \%$ of the scores below k and $10 \%$ of the scores above k ).
d) Find the 70th percentile (that is, find the score k such that $70 \%$ of scores are below k and $30 \%$ of the scores are above k ).
