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Curve fitting and regression
 In many practical problems, when collecting data, we may find 

that two (or more) R.V.s may exhibit a relationship 
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 Although this technique is well established and used, still some experience is needed when we want 
to choose the right model (this also may be driven by the physics of the phenomena, e.g., 
radioactive decay)

 NOTE, we may sometimes, when the relation is very complicated, or we are dealing with many 
dimensions, use the machine learning approach – in fact the linear regression can also be treated as 
machine learning.

 It seems so natural to exploit this and express this fact using a mathematical function (model)

 The trick here would be to find the model that FITS the best our data (we also say that it connects the R.V.s)

Regression is a statistical approach used to analyze the relationship between a
dependent variable (target variable) and one or more independent variables
(predictor variables). The objective is to determine the most suitable function that
characterizes the connection between these variables.
It seeks to find the best-fitting model, which can be utilized to make predictions or
draw conclusions.

https://www.geeksforgeeks.org/types-of-regression-techniques/


Regression - first steps

 Usually, we make first the scatter plot using collected data and take a look…

 The solid lines above are called approximating curves and the approximation of parameters

 What we need to work out is the equation of this curve, ex. 𝒚𝒚 = 𝒂𝒂 + 𝒃𝒃𝒃𝒃, the variable x is 
the independent variable, and y is the dependent variable.

 That task is called curve fitting. 

 Often to understand the relation, we may need to apply some transformation(s) to the 
variables
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Least squares again!

 We have already encountered that technique when discussed general estimation theory. The 
idea is again the same we are going to minimise squares of residuals

 Again, the goal is to estimate a bunch of parameters but this time this is going to lead us to bit 
different result

 Lets define the data as pairs: 𝑥𝑥1,𝑦𝑦1 , 𝑥𝑥2,𝑦𝑦2 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛 , next we make the scatter plot

𝑥𝑥1,𝑦𝑦1 → 𝑑𝑑1

𝑥𝑥2,𝑦𝑦2 → 𝑑𝑑2

𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 → 𝑑𝑑𝑖𝑖
⋮

Δ = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑖𝑖
𝑑𝑑𝑖𝑖2
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 So, if we pick-up a given family of approximating curves the one with the 
property Δ = 𝑚𝑚𝑚𝑚𝑚𝑚 ∑𝑖𝑖 𝑑𝑑𝑖𝑖2 will be the best fitting or least-squares curve

 Certainly, we can also discriminate between families (for instance the 
linear model or parabola)

 Silently, we assume that the uncertainties of the independent (x) variable 
is much smaller than on (y) variable

 Formally we can also switch the axes (treat the y variable as independent)

 Let’s start discussing the linear model fit

Least squares
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overall pattern,
with deviations from the pattern



 Here, we consider that our data set show linear dependency, which we denote as: 
𝒚𝒚 = 𝒂𝒂𝟎𝟎 + 𝒂𝒂𝟏𝟏𝒙𝒙 (we will call 𝑎𝑎0 the intercept and 𝑎𝑎1 slope or gradient)

 To determine the parameters, we need to solve

LS line

𝑑𝑑𝑖𝑖 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖

Δ = �
𝑖𝑖
𝑑𝑑𝑖𝑖2 = �

𝑖𝑖
𝑎𝑎0 + 𝑎𝑎1𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2 Δ = Δ 𝑎𝑎0,𝑎𝑎1 →

𝝏𝝏𝝏𝝏
𝝏𝝏𝒂𝒂𝟎𝟎

= 𝟎𝟎,
𝝏𝝏𝜟𝜟
𝝏𝝏𝒂𝒂𝟏𝟏

= 𝟎𝟎
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regression line from the 
sample is our best 
estimate of this line in 
the population



LS line – normal equations

 Searching for the extremum we get:

 These two we call the normal equation for the LS line

𝜕𝜕𝜕
𝜕𝜕𝑎𝑎0

= �
𝑖𝑖
2 � 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 = 0

𝜕𝜕𝜕
𝜕𝜕𝑎𝑎1

= �
𝑖𝑖
2 � 𝑥𝑥 � 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 = 0

�
𝑖𝑖
𝑦𝑦𝑖𝑖 = 𝑎𝑎0𝑛𝑛 + 𝑎𝑎1�

𝑖𝑖
𝑥𝑥𝑖𝑖 �

𝑖𝑖
𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 = 𝑎𝑎0�

𝑖𝑖
𝑥𝑥𝑖𝑖 + 𝑎𝑎1�

𝑖𝑖
𝑥𝑥𝑖𝑖2

𝒂𝒂𝟎𝟎 =
∑𝑦𝑦 � ∑𝑥𝑥2 − ∑𝑥𝑥 � ∑ 𝑥𝑥𝑥𝑥
𝑛𝑛 � ∑ 𝑥𝑥2 − ∑𝑥𝑥 2 𝒂𝒂𝟏𝟏 =

𝑛𝑛 � ∑ 𝑥𝑥𝑥𝑥 − ∑𝑥𝑥 � ∑𝑦𝑦
𝑛𝑛 � ∑ 𝑥𝑥2 − ∑𝑥𝑥 2

�𝑥𝑥 ≡�
𝑖𝑖
𝑥𝑥𝑖𝑖 , 𝑒𝑒𝑒𝑒𝑒𝑒.

Statistics - Computer Science AGH University of Krakow 7



LS line – normal equations

 The second equation can be written in more convenient way:

 We can divide the first normal equation by 𝑛𝑛

 And, we can write the LS line as:

 This is an interesting result, since it shows clearly that the LS line goes through the 
point 𝑥̅𝑥, �𝑦𝑦 - sample means - it is called the centroid of the data

𝑎𝑎1 =
∑ 𝑥𝑥 − 𝑥̅𝑥 𝑦𝑦 − �𝑦𝑦

∑ 𝑥𝑥 − 𝑥̅𝑥 2

This „looks like” covariance

This „looks like” variance

1
𝑛𝑛
�

𝑖𝑖
𝑦𝑦𝑖𝑖 =

1
𝑛𝑛

𝑎𝑎0𝑛𝑛 + 𝑎𝑎1�
𝑖𝑖
𝑥𝑥𝑖𝑖 → �𝑦𝑦 = 𝑎𝑎0 + 𝑎𝑎1𝑥̅𝑥 → 𝒂𝒂𝟎𝟎 = �𝒚𝒚 − 𝒂𝒂𝟏𝟏�𝒙𝒙

𝒚𝒚 − �𝒚𝒚 =
∑ 𝒙𝒙 − �𝒙𝒙 𝒚𝒚 − �𝒚𝒚

∑ 𝒙𝒙 − �𝒙𝒙 𝟐𝟐 𝒙𝒙 − �𝒙𝒙
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LS line – simple(r) way

𝑠𝑠𝑥𝑥2 =
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 2

𝑛𝑛 − 1
, 𝑠𝑠𝑦𝑦2 =

∑𝑖𝑖 𝑦𝑦𝑖𝑖 − �𝑦𝑦 2

𝑛𝑛 − 1
, 𝑠𝑠𝑥𝑥𝑥𝑥 =

∑𝑖𝑖,𝑗𝑗 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥 𝑦𝑦𝑗𝑗 − �𝑦𝑦
𝑛𝑛 − 1

 The SL line equation can be simplified using the sample variance and covariance

 And with the sample correlation coefficient one can express the slope: 

 This is of outmost interest – the lines that are obtained for 𝑥𝑥, 𝑦𝑦 pairs will be in 
general different than for 𝑦𝑦, 𝑥𝑥 pairs

 The equivalence is possible only when the correlation coefficient is 𝑟𝑟 = ±1

𝑦𝑦 − �𝑦𝑦 =
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥2

𝑥𝑥 − 𝑥̅𝑥 𝑥𝑥 − 𝑥̅𝑥 =
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑦𝑦2

𝑦𝑦 − �𝑦𝑦

𝑦𝑦 − �𝑦𝑦
𝑠𝑠𝑦𝑦

= 𝑟𝑟
𝑥𝑥 − 𝑥̅𝑥
𝑠𝑠𝑥𝑥

𝑥𝑥 − 𝑥̅𝑥
𝑠𝑠𝑥𝑥

= 𝑟𝑟
𝑦𝑦 − �𝑦𝑦
𝑠𝑠𝑦𝑦

𝑧𝑧𝑦𝑦 = 𝑟𝑟𝑧𝑧𝑥𝑥
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𝑟𝑟 =
𝑠𝑠𝑥𝑥𝑥𝑥
𝑠𝑠𝑥𝑥𝑠𝑠𝑦𝑦
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Correlation Coefficient- interpretation

The variable 𝒓𝒓𝟐𝟐 is called the coefficient of determination 

• 𝒓𝒓𝟐𝟐 , when expressed as a percent, represents the percent of variation in the dependent (predicted) variable y 
that can be explained by variation in the independent (explanatory) variable x using the regression (best-fit) line.

• 1 – 𝒓𝒓𝟐𝟐 , when expressed as a percentage, represents the percent of variation in y that is NOT explained by 
variation in x using the regression line

EX: The line of best fit is: ŷ = –173.51 + 4.83x
 The correlation coefficient is r = 0.6631
 The coefficient of determination is 𝒓𝒓𝟐𝟐 = 0.66312 = 0.4397

Approximately 44% of the variation (0.4397 is approximately 0.44) in the final-exam grades can be 
explained by the variation in the grades on the third exam, using the best-fit regression line.

Therefore, approximately 56% of the variation (1 – 0.44 = 0.56) in the final exam grades can NOT be 
explained by the variation in the grades on the third exam, using the best-fit regression line. (This is seen 
as the scattering of the points about the line.)

http://www.agh.edu.pl/


SL parabola 

 Following the same idea we can get employ more complicated model, for instance if 
we use the parabola equation: 𝑦𝑦 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2

 Now the sum of the square of residuals will lead to three normal equations for each 
of the parameters 𝑎𝑎𝑖𝑖

 Usually, for more complicated models we use computer libraries to make the 
calculations for us or machine learning approach

�𝑦𝑦 = 𝑛𝑛𝑎𝑎0 + 𝑎𝑎1�𝑥𝑥 + 𝑎𝑎2�𝑥𝑥2

�𝑥𝑥𝑥𝑥 = 𝑎𝑎0�𝑥𝑥 + 𝑎𝑎1�𝑥𝑥2 + 𝑎𝑎2�𝑥𝑥3

�𝑥𝑥2𝑦𝑦 = 𝑎𝑎0�𝑥𝑥2 + 𝑎𝑎1�𝑥𝑥3 + 𝑎𝑎2�𝑥𝑥4
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Multiple regression

 It is just as easy to extend this idea to higher dimensions, for instance the dependence 
between 3 R.V.s

 Formally, this is a plane equation, thus, we call it the regression plane. Again we can use 
the least-squares principle to find our normal equations

 It is quite popular in the domain of machine learning

𝑧𝑧 = 𝑎𝑎 + 𝑎𝑎𝑥𝑥𝑥𝑥 + 𝑎𝑎𝑦𝑦𝑦𝑦, 𝑜𝑜𝑜𝑜 𝑥𝑥3 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2

�𝑧𝑧 = 𝑛𝑛𝑛𝑛 + 𝑎𝑎𝑥𝑥�𝑥𝑥 + 𝑎𝑎𝑦𝑦�𝑦𝑦

�𝑥𝑥𝑥𝑥 = 𝑛𝑛�𝑥𝑥 + 𝑎𝑎𝑥𝑥�𝑥𝑥2 + 𝑎𝑎𝑦𝑦�𝑥𝑥𝑥𝑥

�𝑦𝑦𝑦𝑦 = 𝑛𝑛�𝑦𝑦 + 𝑎𝑎𝑥𝑥�𝑥𝑥𝑥𝑥 + 𝑎𝑎𝑦𝑦�𝑦𝑦2
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Estimate error 

 As usual, we should take into account that the job is not yet done if we do not give 
error on the estimated parameters

 We can define the „standard” error of the estimate

 Where 𝑦𝑦𝑡𝑡𝑡 ( �𝑦𝑦) denotes the value calculated using the estimated line (sometimes it 
is called theory point)

 We see immediately that the LS curve will have the smallest standard error of 
estimate

 This estimator, has properties similar to those of standard deviation

𝑠𝑠𝑦𝑦|𝑥𝑥 =
∑ 𝑦𝑦 − 𝑦𝑦𝑡𝑡𝑡 2

𝑛𝑛 − 1
=

∑ 𝑦𝑦 − �𝑦𝑦 2

𝑛𝑛 − 1

𝑠𝑠𝑦𝑦|𝑥𝑥
2 =

∑𝑦𝑦2 − 𝑎𝑎0 ∑𝑦𝑦 − 𝑎𝑎1 ∑𝑥𝑥𝑥𝑥
𝑛𝑛 − 1
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Estimate error 

 This analogy can be made a bit more intuitive: if we draw a pair of lines parallel to 
the LS line at respective vertical distances of ±𝑠𝑠𝑦𝑦|𝑥𝑥 then we should expect that 
about 68% of the sampling point will be between them

 It is then easy to extend this for distances of ±2𝑠𝑠𝑦𝑦|𝑥𝑥 and ±3𝑠𝑠𝑦𝑦|𝑥𝑥
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 The square of the standard error of estimate can be written as:

 And using the variance and correlation coefficient

 Combining these definitions we have:

 Also: ∑ 𝑦𝑦 − �𝑦𝑦 2 = ∑ 𝑦𝑦 − 𝑦𝑦𝑡𝑡𝑡 2 + ∑ 𝑦𝑦𝑡𝑡𝑡 − �𝑦𝑦 2, and combining with the above we 
get

Linear correlation coefficient

𝑠𝑠𝑦𝑦|𝑥𝑥
2 =

∑ 𝑦𝑦 − �𝑦𝑦 2 − 𝑎𝑎1 ∑ 𝑥𝑥 − 𝑥̅𝑥 𝑦𝑦 − �𝑦𝑦
𝑛𝑛

𝑠𝑠𝑦𝑦|𝑥𝑥
2 = 𝑠𝑠𝑦𝑦2 1 − 𝑟𝑟2

𝑟𝑟2 = 1 −
∑ 𝑦𝑦 − 𝑦𝑦𝑡𝑡𝑡 2

∑ 𝑦𝑦 − �𝑦𝑦 2 =
∑ 𝑦𝑦 − �𝑦𝑦 2 − ∑ 𝑦𝑦 − 𝑦𝑦𝑡𝑡𝑡 2

∑ 𝑦𝑦 − �𝑦𝑦 2

𝑟𝑟2 =
∑ 𝑦𝑦𝑡𝑡𝑡 − �𝑦𝑦 2

∑ 𝑦𝑦 − �𝑦𝑦 2 =
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
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Explained variation

 Machine learning very often uses the r-squared as a specific goodness of fit metric. 
It is also much easier to interpret

 The „red residuals” will never be larger than the „purple residuals”, so the r-squared 
will be always between 0 and 1 or we can measure it in percents

𝑟𝑟2 = 1 −
∑ 𝑦𝑦 − 𝑦𝑦𝑡𝑡𝑡 2

∑ 𝑦𝑦 − �𝑦𝑦 2 =
∑ 𝑦𝑦 − �𝑦𝑦 2 − ∑ 𝑦𝑦 − 𝑦𝑦𝑡𝑡𝑡 2

∑ 𝑦𝑦 − �𝑦𝑦 2 =
𝑉𝑉 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙]

𝑉𝑉[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]
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Explained variation

 Say, for the previous example we obtained: 𝑉𝑉 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 36 and 𝑉𝑉 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 8, thus

 We say, that most of the variation (78%) seen in our data can be explained by the line –

or by the relationship between our variables. So, applying the model makes sense!

 Here making the fit does not make much sense…

𝑟𝑟2 =
𝑉𝑉 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙]

𝑉𝑉[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]
=

36 − 8
36

= 0.78
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Correlation Coefficient – test of significance

 The correlation coefficient, r, tells us about the strength and direction of the linear relationship 
between x and y. 

 We perform a hypothesis test of the "significance of the correlation coefficient" to decide whether 
the linear relationship in the sample data is strong enough to use to model the relationship in the 
population.

ρ = population correlation coefficient (unknown)

r = sample correlation coefficient (known; calculated from sample data)

Null Hypothesis: 𝑯𝑯𝟎𝟎:𝝆𝝆 = 𝟎𝟎, The population correlation coefficient IS NOT significantly different from zero. 
There IS NOT a significant linear relationship(correlation) between x and y in the population.

Alternate Hypothesis: 𝑯𝑯𝒂𝒂:𝝆𝝆 ≠ 𝟎𝟎, The population correlation coefficient IS significantly DIFFERENT FROM zero. 
There IS A SIGNIFICANT LINEAR RELATIONSHIP (correlation) between x and y in the population.

http://www.agh.edu.pl/
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Correlation Coefficient – test of significance
Method 1: Using the p-value, we usually take significance level of 5%, α = 0.05

 If the p-value is less than the significance level (α = 0.05):

 Decision: Reject the null hypothesis.

 Conclusion: "There is sufficient evidence to conclude that there is a significant linear relationship 
between x and y because the correlation coefficient is significantly different from zero”

 If the p-value is NOT less than the significance level (α = 0.05)

 Decision: DO NOT REJECT the null hypothesis.

 Conclusion: "There is insufficient evidence to conclude that there is a significant linear relationship 
between x and y because the correlation coefficient is NOT significantly different from zero."

 p-value is calculated with a t-distribution with n-2 degrees of freedom.

 test statistics is: 𝑡𝑡 = 𝑟𝑟 𝑛𝑛−2
1−𝑟𝑟2

EX: The line of best fit is: ŷ = -173.51 + 4.83x with r = 0.6631 and there are n = 11 data points. The p-value is 0.026, what
is the decision?

http://www.agh.edu.pl/
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Correlation Coefficient – test of significance

Method 2: Using a table of critical values, α = 0.05

The 95% Critical Values of the Sample Correlation Coefficient Table can be used to give you 
a good idea of whether the computed value of r is significant or not. 
If r is not between the positive and negative critical values, then the correlation coefficient is 
significant. If r is significant, then you may want to use the line for prediction.

EX: Suppose you computed r = 0.801 using n = 10 data points. df = n - 2 = 10 -
2 = 8. The critical values associated with df = 8 are -0.632 and + 0.632. If r < 
negative critical value or r > positive critical value, then r is significant.
Since r = 0.801 and 0.801 > 0.632, r is significant and the line may be used for 
prediction. 

http://www.agh.edu.pl/
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Correlation Coefficient – test of significance

Method 2: Using a table of critical values, α = 0.05



Sampling properties of LS

 The complete treatment of the estimated parameters’ uncertainty is out of the scope of this lecture. I 
just give you somewhat simplified version – but still important and perfectly usable in practice!

 Assume that our model can be written as follow:

 We assume that the residuals are independent of one another and are distributed with 𝜇𝜇 = 0 and 
𝑉𝑉 𝑑𝑑𝑖𝑖 = 𝜎𝜎2

 Let’s start discussing the constraint fit (with the point (0,0)), we know that the best estimate of the 
slope in that case is

 It is quite easy to show, that this estimator is unbiased, 𝑬𝑬 �𝒂𝒂𝟏𝟏 = 𝒂𝒂𝟏𝟏 and its variance 𝑽𝑽 �𝒂𝒂𝟏𝟏 = 𝝈𝝈𝟐𝟐

∑ 𝒙𝒙𝟐𝟐

𝑦𝑦𝑖𝑖 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥𝑖𝑖 + 𝑑𝑑𝑖𝑖

�𝑎𝑎1 =
∑𝑥𝑥𝑥𝑥
∑𝑥𝑥2
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Sampling properties of LS 

 The variance of the slope estimator says a few interesting things – to improve the estimate, we 
should take more data, improve the precision of measurement of each data point (expressed as 𝜎𝜎2) 
and the most important measurements are done close to the origin point!

 If we assume that the residuals are normally distributed (not too crazy assumption), we find that the 
slope estimator is also normally distributed:

 In case, when the distribution is not Gaussian or the variance is not known one can use the 
regression estimation variance

�𝑎𝑎1~𝒩𝒩 𝑎𝑎1,
𝜎𝜎2

∑𝑖𝑖 𝑥𝑥𝑖𝑖2

𝑠𝑠𝑦𝑦|𝑥𝑥 =
∑ 𝑦𝑦 − 𝑦𝑦𝑡𝑡𝑡 2

𝑛𝑛 − 1
→ 𝑠𝑠𝑦𝑦|𝑥𝑥

2 =
∑ 𝑦𝑦 − 𝑦𝑦𝑡𝑡𝑡 2

𝑛𝑛 − 1
→ 𝒔𝒔𝒚𝒚|𝒙𝒙

𝟐𝟐 =
∑𝒊𝒊 𝒚𝒚𝒊𝒊 − �𝒚𝒚𝒊𝒊 𝟐𝟐

𝒏𝒏 − 𝟏𝟏
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The standard deviations of the 
population y values about the line are 
equal for each value of x. In other 
words, each of these normal 
distributions of y values has the same 
shape and spread about the line.



Sampling properties of LS 

 We are familiar with this estimator already! It follows the 𝜒𝜒2 distribution:

 And, in that case the distribution of the slope estimator is:

 Now we can calculate the C.I. for the slope and even test hypothesis related to 
estimated slope!

(𝑛𝑛 − 1)𝑠𝑠𝑦𝑦|𝑥𝑥
2

𝜎𝜎2
~𝜒𝜒2(𝑛𝑛 − 1)

�𝑎𝑎1 − 𝑎𝑎1

𝑠𝑠𝑦𝑦|𝑥𝑥/ ∑𝑖𝑖 𝑥𝑥𝑖𝑖2
~𝓉𝓉 𝑛𝑛 − 1
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C.I. for the slope

 Ex. 1 Let’s assume that we performed the procedure of LS line estimation and 
obtained �𝑎𝑎1 = 1.289, the sum of residual squares are ∑𝑖𝑖 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2 = 107.30 and 
the number of points in our data set was 20. 

 The estimate variance:

 So, the 90% C.I. for the slope can be constructed as follow:

𝑠𝑠𝑦𝑦|𝑥𝑥
2 =

∑𝑖𝑖 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

𝑛𝑛 − 1
=

107.30
19

= 5.647

𝐶𝐶. 𝐼𝐼.90%𝓉𝓉 �𝑎𝑎1 = �𝑎𝑎1 − 𝑡𝑡0.9
𝑠𝑠𝑦𝑦|𝑥𝑥

∑𝑖𝑖 𝑥𝑥𝑖𝑖2
, �𝑎𝑎1 + 𝑡𝑡0.9

𝑠𝑠𝑦𝑦|𝑥𝑥

∑𝑖𝑖 𝑥𝑥𝑖𝑖2
=

= 1.289 − 1.729
5.647

6226.38
, �𝑎𝑎1 + 1.729

5.647
6226.38

= 1.237,1.341
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Unconstrained fit
 If there is no special points in our fitting procedure we need to proceed with the 

unconstrained fit. In this case it can be shown 

 The variance of the estimate

 If we assume that the residuals are normally distributed

 Otherwise 

𝐸𝐸 �𝑎𝑎0 = 𝒂𝒂𝟎𝟎 𝑉𝑉 �𝑎𝑎0 =
𝜎𝜎2

𝑛𝑛

𝐸𝐸 �𝑎𝑎1 = 𝒂𝒂𝟏𝟏 𝑉𝑉 �𝑎𝑎1 =
𝜎𝜎2

∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥𝑖𝑖 2

Again, the larger the 
interval where we measure 
data the more precise the 
estimate

𝒔𝒔𝒚𝒚|𝒙𝒙
𝟐𝟐 =

∑𝒊𝒊 𝒚𝒚𝒊𝒊 − �𝒚𝒚𝒊𝒊 𝟐𝟐

𝒏𝒏 − 𝟐𝟐

�𝑎𝑎1~𝒩𝒩 𝑎𝑎1,
𝜎𝜎2

∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥𝑖𝑖 2 ,
(𝑛𝑛 − 2)𝑠𝑠𝑦𝑦|𝑥𝑥

2

𝜎𝜎2
~𝜒𝜒2(𝑛𝑛 − 2)

�𝑎𝑎1 − 𝑎𝑎1
𝑠𝑠𝑦𝑦|𝑥𝑥/ ∑𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝑥̅𝑥𝑖𝑖 2

~𝓉𝓉 𝑛𝑛 − 2
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