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Confidence

 Statistical statements regarding R.Vs. and probability should always be interpreted in 
terms of model parameters and confidence

 We express the confidence using fractional numbers (%). So, we could say, for 
instance, a 𝜅𝜅% confidence interval for parameter 𝜃𝜃 (based on an actual observation) is the 
interval from 𝜃𝜃− to 𝜃𝜃+, where 𝜅𝜅% → 99%, 95%, 90%, …

 Its meaning is as follow: if we observe an event with the prob. of 95% we say it is 
reasonable, on the other hand if this is just 5% it should be considered unlikely

 So, what left now is to evaluate the confidence interval, we reserve for example 5% of 
probability for „strange” events and consider both cases too-low-strange and too-high-
strange

 This is, so called, two tailed or two-sided confidence interval and we have reserved 2.5%
probability for very high and very low results
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 We already know a lot about evaluating probabilities using the normal distribution

𝐶𝐶. 𝐼𝐼. for the normal distribution

z-score for CL
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 Using the plot or the table from the previous slide we write for the critical values 𝒛𝒛𝒄𝒄 = ±𝟏𝟏.𝟗𝟗𝟗𝟗, 
which corresponds to the confidence level of 95%:

 As usual, there are some tricks… For instance if we knew the distribution variance 
(remember the normal model has two parameters!) we could immediately solve these 
inequalities

 This is a random interval, defined around the sample mean, which contains the unknown 
population mean with the probability of 95%. So, the 95% C.I. for 𝜇𝜇 is given by

𝐶𝐶. 𝐼𝐼. for the normal distribution

𝑃𝑃 −1.96 ≤
�𝑋𝑋 − 𝝁𝝁
𝜎𝜎/ 𝑛𝑛

≤ 1.96 = 0.95

𝑃𝑃 �𝑋𝑋 − 1.96
𝜎𝜎
𝑛𝑛
≤ 𝝁𝝁 ≤ �𝑋𝑋 + 1.96

𝜎𝜎
𝑛𝑛

= 0.95

𝐶𝐶. 𝐼𝐼.95%𝒩𝒩 = �𝑋𝑋 − 1.96
𝜎𝜎
𝑛𝑛

, �𝑋𝑋 + 1.96
𝜎𝜎
𝑛𝑛
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𝐶𝐶. 𝐼𝐼. for the normal distribution

 A general formula that can be applied for the normal distribution for its mean is then

 Nice, but… what if we do not know the distribution variance (and we usually do not)? The 
most sensible approach would be to use the sample variance to estimate 𝜎𝜎2

 We define a new R. V. 𝑇𝑇

 The R.V. T follows the Student’s t-distribution (actually there is a whole family of 
distribution) 𝑇𝑇~𝓉𝓉 𝜈𝜈

𝐶𝐶. 𝐼𝐼.100�(1−𝛼𝛼)%
𝒩𝒩 = �𝑋𝑋 − 𝑧𝑧𝑐𝑐

𝜎𝜎
𝑛𝑛

, �𝑋𝑋 + 𝑧𝑧𝑐𝑐
𝜎𝜎
𝑛𝑛

𝑆𝑆2 =
1

𝑛𝑛 − 1
�

𝑖𝑖
𝑋𝑋𝑖𝑖 − �𝑋𝑋 2 → 𝐸𝐸 𝑆𝑆2 = 𝜎𝜎2

𝑇𝑇 =
�𝑋𝑋 − 𝜇𝜇
𝑆𝑆/ 𝑛𝑛

→ 𝑃𝑃 −𝑡𝑡 ≤
�𝑋𝑋 − 𝜇𝜇
𝑆𝑆/ 𝑛𝑛

≤ 𝑡𝑡 = 1 − 𝛼𝛼
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 𝓉𝓉-distribution is similar to the normal one (obviously!) 

 The larger the 𝜈𝜈 the more resemblance to the normal curve

 We use tables to evaluate the critical values 𝑡𝑡𝑐𝑐 for a given confidence levels, let’s 
continue on the next slide…

𝓉𝓉-distribution
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𝓉𝓉-distribution
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 Start with some formalities… If we draw a sample of size n from a normal distribution 
with the mean 𝜇𝜇, the 𝑅𝑅.𝑉𝑉. 𝑇𝑇

 Where �𝑋𝑋 is the sample mean and 𝑆𝑆 its standard deviation

 And the 𝐶𝐶. 𝐼𝐼. is centred about the sample mean, which contains the true unknown 
population parameter 𝜇𝜇 with probability 1 − 𝛼𝛼

𝐶𝐶. 𝐼𝐼. for 𝓉𝓉-distribution

𝑇𝑇 =
�𝑋𝑋 − 𝜇𝜇
𝑆𝑆/ 𝑛𝑛

~𝓉𝓉 𝜈𝜈 = 𝑛𝑛 − 1

𝑃𝑃 −𝑡𝑡𝑐𝑐 ≤
�𝑋𝑋 − 𝜇𝜇
𝑆𝑆/ 𝑛𝑛

≤ 𝑡𝑡𝑐𝑐 = 1 − 𝛼𝛼

𝑃𝑃 �𝑋𝑋 − 𝑡𝑡𝑐𝑐
𝑆𝑆
𝑛𝑛
≤ 𝜇𝜇 ≤ �𝑋𝑋 + 𝑡𝑡𝑐𝑐

𝑆𝑆
𝑛𝑛

= 1 − 𝛼𝛼

𝐶𝐶. 𝐼𝐼.100�(1−𝛼𝛼)
𝓉𝓉 = �𝑋𝑋 − 𝑡𝑡𝑐𝑐

𝑆𝑆
𝑛𝑛

, �𝑋𝑋 + 𝑡𝑡𝑐𝑐
𝑆𝑆
𝑛𝑛
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Examples – C.I. 

Ex.  The 95% critical values (two tailed) for the normal distribution are given by 𝒛𝒛𝒄𝒄(𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗) = ±𝟏𝟏.𝟗𝟗𝟗𝟗. 
What are the corresponding 𝑡𝑡𝑐𝑐(0.975) for the t distribution with: 

(a) 𝜐𝜐 = 9, 

(b) 𝜐𝜐 = 20, 

(c) 𝜐𝜐 = 60

2.5%

𝑧𝑧𝑐𝑐(𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗) = 1.96

1 − 𝛼𝛼 = 95%
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From the t distribution table with 
integrated probabilities we find: 

a)  𝑡𝑡𝑐𝑐(0.975)
𝜐𝜐=9 = ±2.26,

b)  𝑡𝑡𝑐𝑐(0.975)
𝜐𝜐=20 = ±2.09

c)  𝑡𝑡𝑐𝑐(0.975)
𝜐𝜐=60 = ±2.0



Examples – C.I.

 Ex.  A sample of N = 10 measurements of the diameter of a ball bearing gave a mean 
�̅�𝑑 = 10.731 𝑐𝑐𝑐𝑐 and a standard deviation 𝑠𝑠 = 0.147 𝑐𝑐𝑐𝑐. Find (a) 95% and (b) 99% c.i.
for the actual diameter.

 In this case the confidence interval is given by: 𝐶𝐶. 𝐼𝐼. = �𝑋𝑋 ± 𝑡𝑡0.975
𝑆𝑆
𝑁𝑁−1

. And since 
the sample size 𝑁𝑁 = 10, the number of degrees of freedom is: 𝜐𝜐 = 10 − 1 = 9:

 Now, the 99% confidence interval: 𝑡𝑡𝑐𝑐(0.995) = 3.25 for 𝜐𝜐 = 10 − 1 = 9:

 Note the precision of the measurement – we use a very accurate device (but that 
makes perfect sense – ball bearing may be a critical component of an aircraft 
engine). 

𝐶𝐶. 𝐼𝐼.0.975
(𝑑𝑑) = 10.731 ± 2.26

0.147
9

= 10.731 ± 0.11 𝑐𝑐𝑐𝑐

𝐶𝐶. 𝐼𝐼.0.995
(𝑑𝑑) = 10.731 ± 3.25

0.147
9

= 10.731 ± 0.159 𝑐𝑐𝑐𝑐
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Examples – C.I. 

 Ex. A sample poll of 100 voters has been chosen at random in a given 
district. The result indicated that 55% of them were supporting a party A. Find 
(a) 95% and (b) 99% c.i. for the proportion of all voters supporting this party.

a) The c.i. for the population p is defined as: 𝑃𝑃 ± 𝑧𝑧𝑐𝑐𝜎𝜎𝑃𝑃 = 𝑃𝑃 ± 𝑧𝑧𝑐𝑐
𝑝𝑝(1−𝑝𝑝)

𝑛𝑛
. In 

order to estimate parameter p we use the sample proportion 
(measurement!)

b) And the 99% c.i.:

𝑃𝑃 ± 𝑧𝑧0.975
𝑝𝑝(1 − 𝑝𝑝)

𝑛𝑛 = 0.55 ± 1.96
0.55 � 0.45

100 = 0.55 ± 0.10

𝑃𝑃 ± 𝑧𝑧0.995
𝑝𝑝(1 − 𝑝𝑝)

𝑛𝑛 = 0.55 ± 2.58
0.55 � 0.45

100 = 0.55 ± 0.13
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Tests of Hypotheses

 Statistical decisions – the bread and butter of statistical reasoning. We need to make a decision about 
populations using collected samples. 

 Using this approach we can check if a new medicine is really helping in curing a disease, if new 
educational system is better than the old etc.

 The first step of such mathematical procedure is preparing assumptions. They may be true or false, 
depending on the reasoning results, and are called statistical hypotheses.
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 Formally, they are statements concerning the probability 
distributions describing respective populations. For instance, if we 
are investigating a coin that may be loaded, we can formulate first 
a hypothesis that the coin is fair: 𝑝𝑝 = 0.5, where 𝑝𝑝 is the probability 
of getting a head (tail). This we call the null hypothesis: 𝑯𝑯𝟎𝟎.

 Now, any other hypothesis that is different from the null one is 
called an alternative hypothesis. We denote it by 𝑯𝑯𝟏𝟏.

https://medium.com/@thecodingcookie/hypothesis-testing-92b7270976de


 The results of statistical reasoning are not deterministic! Repeating the same 
experiment we may get different results and draw different conclusions! It is 
possible – this is probability.

 The best we can do is the following:

 We formulate a null hypothesis and say that it is true. 

 Next, we make an experiment and obtain a random sample. 

 If the results differ from those expected under 𝐻𝐻0 on the basis of pure 
chance taking into account sampling theory, we would say the observed 
result differ significantly from expectations. 

 Now, we have reason to reject the null hypothesis or not accept it on the 
basis of the evidence.
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Tests of Hypotheses

https://edvancer.in/hypothesis-testing-simplified/


 Say, we tossed a coin 20 times and we observed 16 heads. This is a clear evidence to reject 
the 𝐻𝐻0 that the coin is fair. However, we may be wrong! It is possible to get 16 heads, but the 
probability is low.

 Such procedure that enables us to decide whether to accept or reject hypotheses are called 
tests of hypotheses or decision rules.

Since the null and alternative hypotheses are contradictory, you must examine evidence to 
decide if you have enough evidence to reject the null hypothesis or not. The evidence is in 
the form of sample data.

H0: The null hypothesis: It is a statement of no difference between the variables—they are 
not related. This can often be considered the status quo and as a result if you cannot accept 
the null it requires some action.

Ha: The alternative hypothesis: It is a claim about the population that is contradictory 
to H0 and what we conclude when we reject H0. This is usually what the researcher is trying 
to prove.
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Tests of Hypotheses



Type I and Type II errors

 In both cases we failed and error in judgement was made – so, it is bad…

 Whatever testing procedure we assume, we need to take necessary steps towards 
minimisation the errors of decision. 

 It is not obvious and not trivial – decreasing one type of errors is accompanied by an 
increase in the other type. 

 Very often in practice one type of error may be much more serious than the other (e.g. 
judicial system). The only way to limit both types of errors is to increase the sample size –
which may not be easy or even possible

BUT we have a problem now:

 we could heve rejected a hypothesis which happens to be true. This 
kind of error is called Type I. 

 we may have accepted a hypothesis which is actually not true, we 
say we made Type II error.
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 Imagine that we rejected a hypothesis and it happens to be true. This kind of error is 
called Type I. 

 If we accepted a hypothesis which is not true, we say we made Type II error.

 In both cases we failed and error in judgement was made – so, it is bad…(remember
covid tests or cancer markers?)
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Type I and Type II errors

sick not sick

sick 10 2
not sick 1 8

PREDICTED

TR
U

E

sick not sick

sick True 
positive

False
Negative

not sick False
Positive

True 
Negative

PREDICTED

TR
U

E



 Imagine that we rejected a hypothesis and it happens to be true. This kind of error is 
called Type I. 

 If we accepted a hypothesis which is not true, we say we made Type II error.

 In both cases we failed and error in judgement was made – so, it is bad…(remember
covid tests or cancer markers?)

Confusion Matrix –
common tool for decision
quality assesment

Type I (miss) –
failing to assert
true

Type II (false hit) –
asserting somethig that is not there…
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Type I and Type II errors

sick not sick

sick False
Negative

not sick False
Positive

PREDICTED

TR
U

E



Level of significance
 When testing a hypothesis, the maximum probability with which we would be willing to 

risk any Type I errors is called the level of significance of the test.

 Good practice states that this value should be chosen before any sample is collected –
we do not wish to bias our results in any way!

 Usually, we choose a level of significance of 0.05 or 0.01, other values can also be 
used. 

 Say, we chose the S.L. to be 0.05, i.e., there is 5% chance to reject the hypothesis that 
should be accepted.

 Conversely, whenever the null hypothesis is true, we are about 95% confident that we 
would make the correct decision.

 We also say, that the null hypothesis has been rejected at a 0.05 level of significance, 
which means that we could make a wrong decision with probability of 0.05
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 Imagine that we rejected a hypothesis and it happens to be true. This kind of 
error is called Type I and the probability is described by 𝜶𝜶. 

 If we accepted a hypothesis which is not true, we say we made Type II error 
and the probability is described by 𝜷𝜷.

 In both cases we failed and error in judgement was made, so we’d like to have 
these values low.

Statistics - Computer Science AGH University of Krakow 19

Type I and Type II errors



Tests with normal distribution

 Let’s assume that we are considering a statistics S that is approximately normal with 
the mean and standard deviation 𝜇𝜇𝑆𝑆 and 𝜎𝜎𝑆𝑆. First thing first – standardisation:

 For the time being, we assume that we reject the hypothesis if our statistics is either 
too small or too large:

𝑍𝑍𝑆𝑆 =
𝑆𝑆 − 𝜇𝜇𝑆𝑆
𝜎𝜎𝑆𝑆
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 So, how to reject the test? If for a sample, its z-score corresponding to the value of 𝑆𝑆 is outside the 
95% interval, we could conclude that this is unlikely event that would occur with probability of 5%, if 
our null hypothesis were true

 In other words, we would say, that the z-score for this sample differed significantly from our 
expectations based on the 𝐻𝐻0 and it should be rejected!
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Tests with normal distribution

 The grey area represents the level of significance of 
the test, i.e., the probability of Type I error

Or, we say, that the hypothesis was rejected at 5% 
level of significance

 All z-scores outside −1.96 and 1.96 are called critical region of the rejection of the null hypothesis 
(the region of significance) 

 Not too hard to notice that all z-scores inside this interval will be called the region of acceptance of 
the hypothesis or the region of non-significance



 Reject the null hypothesis at 𝛼𝛼 level of significance if the z-score of a statistic S falls 
outside the range ±𝑧𝑧𝑆𝑆 (e.g., for 𝛼𝛼 = 0.05, ±𝑧𝑧𝑆𝑆 = ±1.96). We also say, that the observed 
sample statistics is significant at level 𝛼𝛼

 We accept (or do nothing!) otherwise

 Note! You could choose an arbitrary value for the level of significance

 Note! We can also use one-tailed tests (the one discussed above is called two-tailed 
test). The difference: check if a technological process A is better or worse than B, 
check if a technological process A is better than B

The decision rule
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Test statistics
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null hyphotesis 𝑯𝑯𝟎𝟎 𝝁𝝁 = 𝝁𝝁𝟎𝟎 (𝝈𝝈 known) 𝝁𝝁 = 𝝁𝝁𝟎𝟎 𝝈𝝈 = 𝝈𝝈𝟎𝟎𝟐𝟐

Test statistic T
�𝑋𝑋 − 𝝁𝝁
𝜎𝜎/ 𝑛𝑛

�𝑋𝑋 − 𝝁𝝁
𝑆𝑆/ 𝑛𝑛

𝒏𝒏 − 𝟏𝟏 𝑺𝑺𝟐𝟐

𝝈𝝈𝟎𝟎

Distribution of T 
under 𝑯𝑯𝟎𝟎

𝑁𝑁(0,1) 𝓉𝓉 𝜈𝜈 = 𝑛𝑛 − 1 𝜒𝜒2 𝜈𝜈 = 𝑛𝑛 − 1



Tests for means

 Ex. 1 Imagine somebody working for a Casino that is tasked with checking that new batch 
of tossing coins is fair. Say, we just draw one coin.

 We could start with deciding on the decision rule, say, we want to perform 100 tosses and 
obtain a number of heads for which the prob. is „high”. Let’s pick this to be over 
95%. We hypothesising an initial range to be from 40 to 60 heads. Let’s check the figures.

𝑃𝑃 40 ≤ 𝑋𝑋ℬ ≤ 60 = 𝐶𝐶10040 1
2

40 1
2

60

+ ⋯+ 𝐶𝐶10060 1
2

60 1
2

40

𝜇𝜇 = 𝑛𝑛𝑝𝑝 = 100 �
1
2

= 50,𝜎𝜎 = 𝑛𝑛𝑝𝑝𝑛𝑛 = 5, 𝜇𝜇 ≫ 𝜎𝜎
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 This calculations are cumbersome…, however we could use the 
normal distribution approximation: 



Tests for means – example cont. 

 For categorical numbers we get: 40 ≡ 39.5, 60 ≡ 60.5, we do that so the results are nice 
numbers (mind the standardisation transformation):

𝑧𝑧39.5 =
39.5 − 50

5
= −2.1, 𝑧𝑧60.5=

60.5 − 50
5

= 2.1
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 So, we have our critical points: 𝑧𝑧39.5 = −2.1, 𝑧𝑧60.5 = 2.1

𝑃𝑃 40 ≤ 𝑋𝑋ℬ ≤ 60 = 𝑃𝑃 −2.1 ≤ 𝑋𝑋𝒩𝒩 ≤ 2.1 = 0.9642

 This looks reasonable, the probability is high enough. We can formulate the decision rule as: 

 accept the hypothesis 𝐻𝐻0 if the number of heads (or tails) observed in a data sample of 100 
tosses is between 40 and 60. 

 If we observe a different number of heads – reject the hypothesis that the coin is fair



 Note, that the Type I error (rejecting the 𝐻𝐻0 when it is correct) can occur with 
the probability of (1 − 0.9642) = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟗𝟗𝟎𝟎

 The decision rule can be showed using a plot:

Type I error → Level of significance

Accept 𝐻𝐻0 if the result is here

𝟎𝟎.𝟎𝟎𝟎𝟎𝟗𝟗𝟎𝟎/𝟐𝟐
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Tests for means – example cont. 



 If the observed result (given a data sample) would land within the shaded area, we say: the z-
score differs significantly from the expected value (taking into account pure statistical 
chances). This is equivalent to accept the alternative hypothesis (however, there is a catch… Very 
often we chose not to do that, and just reject the 𝐻𝐻0)

 Note, that we chosen very unusual significance level 𝜶𝜶 = 𝟎𝟎.𝟗𝟗𝟎𝟎 %. As mentioned before – it does not 
matter! This value is up to you! 

 Also, consider this: what if the true value of 𝑝𝑝 = 0.7? It would be perfectly possible to observe 60 
heads – so, we would accept the wrong hypothesis… (Type II error)

2.5% 2.5%
𝑃𝑃 0 ≥ 𝑋𝑋 ≥ 𝑧𝑧+ = 0.5 − 0.025

𝑧𝑧+ = 1.96, 𝑧𝑧− = −1.96

𝜇𝜇 = 𝑛𝑛𝑝𝑝 = 64 �
1
2

= 32,𝜎𝜎 = 𝑛𝑛𝑝𝑝𝑛𝑛 = 4
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Tests for means – example cont. 

 Just for training, design a decision rule when the data sample is 64 
tosses? Assume that the level of significance 𝛼𝛼 = 0.05



Tests for means

 We need to translate the z scores into heads count

we have to accept the hypothesis 𝐻𝐻0 if the number of heads (or tails) observed
in a data sample of 64 tosses is between 24 and 39 @ 5% SL. 

𝑍𝑍 =
𝑋𝑋 − 𝜇𝜇
𝜎𝜎

→ ±1.96 =
𝑋𝑋 − 32

4
𝑋𝑋1.96 = 39.84,≡ 𝟎𝟎𝟗𝟗, 𝑋𝑋−1.96 = 24.16 ≡ 𝟐𝟐𝟐𝟐
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 Note, that this calculations go exactly the same way as if we want to 
estimate the 𝐶𝐶. 𝐼𝐼. representing 95% probability!

 Ok, how we should deal with Type II error? Remember?

 If we accepted a hypothesis which is not true, we say we 
made Type II error and the probability is described by 𝜷𝜷.



ML spoiler 
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Let’s see the problem with Type I and Type II error – we cannot have them both low:
efford to reduce one type increase the other.

null hyphotesis
𝐻𝐻0

alternative
hyphotesis 𝐻𝐻𝐴𝐴

https://en.wikipedia.org/wiki/Type_I_and_type_II_errors


ML spoiler 
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Let’s shift the critical value – has out „classification” improved?

null hyphotesis
𝐻𝐻0

alternative
hyphotesis 𝐻𝐻𝐴𝐴

The power of the test depends on:

a) alpha ?

b) beta ?

https://en.wikipedia.org/wiki/Type_I_and_type_II_errors


Type II error – comming back

Statistics - Computer Science AGH University of Krakow 31

 If we accepted a hypothesis which is not true, we say we made Type II error and the 
probability is described by 𝜷𝜷.

 So, how we should deal with Type II error? Well, one way or another we need to see 
the result and decide if we want to re-word the decision rule (this may be tricky). For 
instance if we see the number of heads to be 23, it is so close… We could say, we do 
not reject the zero hypothesis if we find the result between 22 and 42.

𝑋𝑋1.96 = 39.84,≡ 𝟎𝟎𝟗𝟗, 𝑋𝑋−1.96 = 24.16 ≡ 𝟐𝟐𝟐𝟐

 This is not nice and nasty way of doing things, though. We should never ever 
change the decision rule after seeing data – blinded analysis

 We have additional tools to enforce our decision – p-value technique



p-value

 This technique is very powerful and is of great interest in practical data analyses 

 Say, we have a problem where two hypotheses were formulated 𝐻𝐻0 and 𝐻𝐻1. Say, the zero hypo 
makes attempt at assertion that a given parameter has some specified value, the alternative 
hypos can de defined as follow:

 Its value is indeed greater than stated (right-tailed test)

 The parameter is less than stated (left-tailed test)

 It is different (greater than or less than) than stated (two-tailed test)

 We can use the following definition: the p-value (probability value) is the probability of obtaining 
the value of the test statistic at least as extreme as the one calculated using data sample, 
assuming that the null hypothesis is correct

 In other words, p-value estimates how well the observed data support the null hypothesis (if it is 
true). It measures how compatible are your data with the 𝐻𝐻0: large values makes your null look 
good, small suggest rejection
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p-value

 Let’s see some action! Say, we have a R.V. following the normal distribution with the 
standard deviation 𝜎𝜎 = 3. Now, 𝐻𝐻0 states that the mean value 𝜇𝜇 = 12. Next, we drawn a 
sample, n=36, and got �̅�𝑥 = 12.95, we choose „standard” test statistics to be:

 The p-value will depend on the alternative hypothesis!!

𝑍𝑍 =
�𝑋𝑋 − 𝜇𝜇
𝜎𝜎/ 𝑛𝑛

=
12.95 − 12

0.5
= 1.9
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 𝐻𝐻1: 𝜇𝜇 > 12 in this cast the p-value is defined as the probability that 
for a random sample of size 𝒏𝒏 = 𝟎𝟎𝟗𝟗we would observe a sample 
mean of 𝟏𝟏𝟐𝟐.𝟗𝟗𝟗𝟗 or higher if the true mean were 𝟏𝟏𝟐𝟐: 𝑃𝑃(𝑍𝑍 ≥ 1.9) =
0.029. This represents 3 chances in 100 that �̅�𝑥 = 12.95 if 𝜇𝜇 = 12



p-value

 Let’s see some action! Say, we have a R.V. following the normal distribution with the 
standard deviation 𝜎𝜎 = 3. Now, 𝐻𝐻0 states that the mean value 𝜇𝜇 = 12. Next, we drawn a 
sample, n=36, and got �̅�𝑥 = 12.95, we choose „standard” test statistics to be:

 The p-value will depend on the alternative hypothesis!!

𝑍𝑍 =
�𝑋𝑋 − 𝜇𝜇
𝜎𝜎/ 𝑛𝑛

=
12.95 − 12

0.5
= 1.9
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 𝐻𝐻1: 𝜇𝜇 > 12
in this cast the p-value is defined as:

the probability that for a random sample of size 𝒏𝒏 = 𝟎𝟎𝟗𝟗we would observe 
a sample mean of 𝟏𝟏𝟐𝟐.𝟗𝟗𝟗𝟗 or more,
if the true mean were 𝟏𝟏𝟐𝟐:
𝑃𝑃(𝑍𝑍 > 1.9) = 0.03. 

This represents 3 chances in 100 that �𝑋𝑋 = 12.95 if 𝜇𝜇 = 12

1.9



p-value

 Let’s see some action! Say, we have a R.V. following the normal distribution with the 
standard deviation 𝜎𝜎 = 3. Now, 𝐻𝐻0 states that the mean value 𝜇𝜇 = 12. Next, we drawn a 
sample, n=36, and got �̅�𝑥 = 12.95, we choose „standard” test statistics to be:

 The p-value will depend on the alternative hypothesis!!

𝑍𝑍 =
�𝑋𝑋 − 𝜇𝜇
𝜎𝜎/ 𝑛𝑛

=
12.95 − 12

0.5
= 1.9
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 𝐻𝐻1: 𝜇𝜇 ≠ 12

in this cast the p-value is defined as:

• the probability that for a random sample of size 𝒏𝒏 = 𝟎𝟎𝟗𝟗we would 
observe a sample mean of 𝟎𝟎.𝟗𝟗𝟗𝟗 or more units (standard deviation) 
away from 𝟏𝟏𝟐𝟐: 

𝑃𝑃 𝑍𝑍 ≥ 1.9 + 𝑃𝑃 𝑍𝑍 ≤ −1.9 = 0.057. 

• This represents 6 chances in 100 that �̅�𝑥 − 12 ≥ 0.95 if 𝜇𝜇 = 12 1.9−1.9



p-value

Discussion:

 First of all, the p-value does not provide a tool for rejecting or keeping the null hypothesis 
on its own! We always need an alternative hypo against which we are going to make a 
judgement. The same value of test statistics based on the same data sample may lead to 
completely different conclusions

 In the first case we have small p-value, which suggests we should reject the null in 
favour of the given alternative

 The second one sports large p-value and suggests strongly not to reject the null in 
favour of the alternative (less than 12)

 Final example again shows low p-value and suggests that the alternative hypothesis 
should be considered (note that this one is not so strong as the first one)
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p-value

 Ex. 3 Imagine, a psychic wants to confirm his abilities for extrasensory 
perception (ESP). He was asked to guess the colour (yellow and blue) of a 
card chosen from a deck of 50 cards by somebody else in other room. The 
test subject does not know how many yellow or blue cards there are in the 
deck. Say, he identified correctly 32 cards. Is he really the psychic? Assume 
level of significance to be 𝛼𝛼 = 0.05

 Let 𝑝𝑝 be the probability of the individual stating the colour of a card correctly, 
we formulate the following hypothesis

 𝐻𝐻0: 𝑝𝑝 = 0.5 – he is just randomly guessing

 𝐻𝐻1:𝑝𝑝 > 0.5 – he indeed has ESP abilities

 We choose the one-tail test – we are going for high scores!
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p-value

 𝐻𝐻0: 𝑝𝑝 = 0.5 – he is just randomly guessing

 𝐻𝐻1:𝑝𝑝 > 0.5 – he indeed has ESP abilities

 We choose the one-tail test – we are going for high scores!

 For the null hypo we have:

 For one-tailed test we have:

so it is rather unlikely that he identified the cards by guessing only….

but how much unlikely?

𝑃𝑃 0 ≥ 𝑍𝑍 ≥ 𝑧𝑧1 = 0.45, 𝑧𝑧1 = 1.645

𝜇𝜇 = 𝑛𝑛𝑝𝑝 = 50 � 0.5 = 25,𝜎𝜎 = 𝑛𝑛𝑝𝑝𝑛𝑛 = 3.54
3.54

1.645

Statistics - Computer Science AGH University of Krakow 38



p-value
 Approximating the binomial distribution by the normal one, we find that the result of 

32 has the following z-score

 We should conclude, that there is something extraordinary in this result

 Please, repeat the calculations for the significance level 𝛼𝛼 = 0.01

 Now, let’s calculate the p-value: what is the probability that the 32 cards will be 
identified correctly using just random guessing? 

 So, the chances of concluding that the test subject does not have EPS abilities 
would be like 2 in 100 – this supports rejection of the null hypo.

𝑋𝑋 − 𝜇𝜇
𝜎𝜎

=
32 − 25

3.54
= 1.98

𝑃𝑃 𝑍𝑍 ≥ 1.98 ≈ 2%
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