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Statistical Inference

 The statistical inference consists in arriving at (quantitative) conclusions 
concerning a population where it is impossible or impractical to examine the 
entire set of observations that make up the population. Instead, we depend 
on a subset of observations - a sample.
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Example:
I checked 5 restaurants in Milano
and claim that mean cost of pizza is
15 €.

In Milano pizza costs betweeen 10 
and 20 €.



Point estimation

• Point estimation in statistics involves using sample data to calculate a single value that serves as 
the best approximation of an unknown population parameter.

• Population Parameter: The true average weight of all turtles in Florida (population mean, denoted as μ).

• Sample Data: We weigh 50 turtles and find the sample mean weight to be 150.4 pounds.

• Our point estimate for the true population mean weight is 150.4 pounds. This value represents our best 
guess based on the sample data. 3

Suppose we want to estimate the mean weight of a certain 
species of turtles in Florida. Collecting data on every 
individual turtle in Florida would be impractical due to the 
large population size. Instead, we take a random 
sample of 50 turtles and use the sample mean weight to 
estimate the true population mean.



Statistical Sample and Population

• We start with two estimators:

− estimator of a mean value

− estimator of a variance

• Later we will develop methods for the estimation of unknown parameter of a 
model (linear, or any other) based on samples (method of moments, method of 
least squares, maximum likelihood estimation)

we want to estimate 𝜇𝜇 and 𝜎𝜎2
of a population with a use of 
sample
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Point estimation

 Let’s think about the following: we are looking at some 
phenomena (took a data sample), now what we like to do is to 
try describe the data using a model (have we already discussed 
any models?)

 Using the statistics lingo we would say: we want to estimate the 
parameters for the hypothesised population model

 As usual there are a lot of methods, we are going to have a look 
at a few of them

 Estimators should have specific features (we will discuss it today)

 BUT

 Let’s start with some examples first!
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Statistical Sample and Population

 Sample posses a property 𝑋𝑋 (our RV); 𝑋𝑋 → 𝑓𝑓(𝑥𝑥, 𝝀𝝀) (probability density function), 𝝀𝝀 –
set of parameters of the population to be determined from the sample (e.g. 𝜇𝜇,𝜎𝜎, 
etc.).

 Any function of the random variables constituting a random sample that is used for 
estimation of unknown distribution parameters 𝝀𝝀 is called a statistic 𝑺𝑺:

𝑆𝑆 = 𝑆𝑆 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛
𝜆𝜆𝑖𝑖 = 𝐸𝐸 𝑆𝑆 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 ≡ 𝑆̂𝑆

 We say: the estimated value of a statistic 𝑆̂𝑆 is said to be estimator of the parameter
𝜆𝜆 ; the estimation is carried out on the basis of an n-element sample.

do we  know any statistic?
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 Let’s set a generic procedure using this simple example

 First, we pick the parameter to be estimated

 Next, we need to collect data and compute a sampling statistics using a formula corresponding to 
the parameter we are interested in

 In our example that is a sample mean

�𝑋𝑋 =
𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛

𝑛𝑛
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Estimators

 This, in turn, we call an estimator of true parameter, in our case 
this would be: 𝜇𝜇 → �𝑋𝑋 = 𝜇̂𝜇 (we use the caret symbor "^")

 Remember – the estimator is a random variable, for different 
sample we are going to get different value

 The estimator will follow its own distribution – sampling 
distribution of the estimator



Parameter estimation
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 Consider the following: to check the water for contamination by a micro-organism a 
number of samples were taken, the results are summarised as follow

 One can assume that the data follow the Poisson distribution with an unknown 
parameter 𝜇𝜇 (each water sample is an independent observation on the same 
random variable!)

 For these particular data, we can estimate the 𝜇𝜇 as:

𝑥̅𝑥 =
0 � 53 + 1 � 25 + ⋯+ 8 � 1

58 + 25 + ⋯+ 1
=

84
103

= 0.816

𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋103 → 𝑋𝑋 ≡ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜇𝜇)

�𝑋𝑋(1) =
𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋103

103 → �𝑋𝑋 =
𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛

𝑛𝑛

Estimators
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Counts 0 1 2 3 4 5 6 7 8 >9
Frequency 53 25 13 2 2 1 1 0 1 0



Properties of estimators
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Estimator for the mean
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Summary so far
 A generic „algorithm” for point estimation task would be:

 Collect the data and understand it

 Come up with a model, this will specify a parameter or many parameters that we 
need to make an estimate

 For a given parameter(s) we need an estimator(s) (typically we will concentrate on 
the mean value or variance, however we also can tackle more ambitious cases –
e.g., divorces)

 Work out the estimate of the parameter – this is a random variable and will be 
different for different data sets

 Finally, analyse the sampling distribution of the estimator to make a judgement of 
its usefulness

 We are looking for unbiased (expectation value) and efficient estimators (variance)
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Estmator Wish List

 We are looking for the best estimator (but what does „best” mean? 

 In the best of all possible worlds, we could find an estimator 𝜇̂𝜇 for which 𝜇̂𝜇 = 𝜇𝜇 in 
all samples. But this does not exist, sometimes 𝜇̂𝜇 will be too small, fort other 
samples too big.

 Let’s write (in general): 𝜃̂𝜃 = 𝜃𝜃 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. Therefore the best estimator 
𝜃̂𝜃:

 has small estimator errors: the mean squared error RMS 𝐸𝐸 𝜃̂𝜃 − 𝜃𝜃 2
shoud

be the smallest

 should be unbiased 𝐸𝐸 (𝜃̂𝜃) = 𝜃𝜃

 should have small variance 𝑉𝑉𝑉𝑉𝑉𝑉 (𝜃̂𝜃)

 We are looking for unbiased (expectation value) and efficient estimators (variance).
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Sampling distribution

 Any sample statistics is a function of R.Vs and is therefore itself a random variable – that is absolutely 
critical to remember!

 The probability distribution of a sample statistics is called the sampling distribution of this statistics 
(sorry for complicated circular sentences…)

 A recipe to get such distribution would be as follow: we should draw all possible samples of 
size n from a population, next we should compute the statistics at hand, thus, obtaining the 
distribution of this statistics. We call it the sampling distribution

 It is perfectly ok to compute the mean, variance, standard deviation and other moments for the 
sampling distribution!

 To make it a bit more comprehensible, let’s consider the sample mean. Let 𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑛𝑛 be 
independent, identically distributed RVs. The mean of the sample is another R.V. defined as follow:

�𝑿𝑿 =
𝟏𝟏
𝒏𝒏
𝑿𝑿𝟏𝟏 + 𝑿𝑿𝟐𝟐 + ⋯+𝑿𝑿𝒏𝒏 =

∑𝒊𝒊/𝟏𝟏
𝒊𝒊/𝒏𝒏𝑿𝑿𝒊𝒊
𝒏𝒏
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 Theorem 3. If the population is not infinite (of size N) or is the sampling is done without 
replacement, then the variance should be evaluated using:

 Theorem 4. If the population from which we draw samples is normally distributed with 
mean 𝜇𝜇 and variance 𝜎𝜎2, then the sample mean is also normally distributed with mean 𝝁𝝁

and variance 𝝈𝝈
𝟐𝟐

𝒏𝒏

 Theorem 5. Let’s assume that the population from which samples are drawn has mean 𝜇𝜇
and variance 𝜎𝜎2. The population may or may not be normally distributed. The 
standardised variable associated with �𝑋𝑋 can be written as:

Sampling dist. of means

𝜎𝜎𝜎 �𝑋𝑋
2 =

1
𝑛𝑛
𝜎𝜎2

𝑁𝑁 − 𝑛𝑛
𝑁𝑁 − 1

,𝑁𝑁 → ∞:𝜎𝜎𝜎 �𝑋𝑋
2 → 𝜎𝜎�𝑋𝑋

2

𝑍𝑍 =
�𝑋𝑋 − 𝜇𝜇
𝜎𝜎/ 𝑛𝑛
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 Theorem 1. The mean of the sample means is a consistent etimator of 𝜇𝜇:

where 𝜇𝜇 is the mean of the population. So, we say, that the expected value 
of the sample mean is the population mean – how interesting!

 Theorem 2. If a population is infinite and the sampling is random, or if a 
population is finite and sampling is with replacement, then the variance of 
the distributions of the sample means, denoted by 𝜎𝜎 �𝑋𝑋, is:

Sampling dist. of means

𝐸𝐸 �𝑋𝑋 = 𝜇𝜇 �𝑋𝑋 = 𝜇𝜇

𝐸𝐸 �𝑋𝑋 − 𝜇𝜇 2 = 𝜎𝜎�𝑋𝑋
2 =

1
𝑛𝑛
𝜎𝜎2
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Estimator for sample variance
 If 𝑋𝑋1,𝑋𝑋2,⋯𝑋𝑋𝑛𝑛 denote R.Vs for a random sample of size n, the R.V. giving the variance of the 

sample (the sample variance) is defined as:

 We already know, that 𝐸𝐸 �𝑋𝑋 = 𝜇𝜇, is this the same for 𝐸𝐸 𝑆𝑆2 = 𝜎𝜎2?

 A little digression – whenever the expected value of a statistics is equal to the 
corresponding population parameter, we call this statistics an unbiased estimator. Its 
value is then an unbiased estimate of the respective parameter

 Unfortunately, it can be proved that for the sample variance, we have:

 However, an unbiased variance estimator is easy to find:

𝑆𝑆2 =
𝟏𝟏
𝒏𝒏

𝑋𝑋1 − �𝑋𝑋 2 + 𝑋𝑋2 − �𝑋𝑋 2 + ⋯+ 𝑋𝑋𝑛𝑛 − �𝑋𝑋 2

𝐸𝐸 𝑆𝑆2 = 𝜇𝜇𝑆𝑆2 =
𝑛𝑛 − 1
𝑛𝑛

𝜎𝜎2

𝑆̂𝑆2 =
𝑛𝑛

𝑛𝑛 − 1
𝑆𝑆2 =

𝟏𝟏
𝒏𝒏 − 𝟏𝟏

𝑋𝑋1 − �𝑋𝑋 2 + 𝑋𝑋2 − �𝑋𝑋 2 + ⋯+ 𝑋𝑋𝑛𝑛 − �𝑋𝑋 2
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Estimator for the variance
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Point estimators - summary

 Sample mean �𝑋𝑋 is the point estimator of parameter 𝜇𝜇:

 The unbiased estimator for variance is:

 The estimator of the correlation (𝑋𝑋,𝑌𝑌) is:

�𝑋𝑋 =
𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛

𝑛𝑛
=

1
𝑛𝑛
�
𝑖𝑖=1..𝑛𝑛

𝑋𝑋𝑖𝑖

𝑆̂𝑆2 =
1

𝑛𝑛 − 1
𝑋𝑋1 − �𝑋𝑋 2 + 𝑋𝑋2 − �𝑋𝑋 2 + ⋯+ 𝑋𝑋𝑛𝑛 − �𝑋𝑋 2 =

1
𝑛𝑛 − 1

� 𝑋𝑋𝑖𝑖 − �𝑋𝑋 2

𝑟𝑟(𝑋𝑋,𝑌𝑌) =
𝑆𝑆𝑋𝑋𝑋𝑋

𝑆𝑆𝑋𝑋𝑋𝑋 𝑆𝑆𝑦𝑦𝑦𝑦
𝑆𝑆𝑋𝑋𝑋𝑋 = � 𝑋𝑋𝑖𝑖 − �𝑋𝑋 2 𝑆𝑆𝑌𝑌𝑌𝑌 = � 𝑌𝑌𝑖𝑖 − �𝑌𝑌 2

𝑆𝑆𝑋𝑋𝑋𝑋 = �(𝑋𝑋𝑖𝑖 − �𝑋𝑋)(𝑌𝑌𝑖𝑖 − �𝑌𝑌)
19



Sampling dist. of variances

 In order to create the sampling distribution of variances, we take all the possible samples of 
size n, that can be drawn from a population and calculate their variances

 One change is, that instead of looking directly at the distribution of the sample variance, 
we look at the R.V.:

 Theorem 6. If a random samples of size n are taken from a population having a normal 

distribution, than the sampling variable 𝑛𝑛𝑆𝑆
2

𝜎𝜎2
has a 𝜒𝜒2 distribution with 𝑛𝑛 − 1 degrees of 

freedom

𝑛𝑛𝑆𝑆2

𝜎𝜎2
=

𝑛𝑛 − 1 𝑆̂𝑆2

𝜎𝜎2
=

𝑋𝑋1 − �𝑋𝑋 2 + 𝑋𝑋2 − �𝑋𝑋 2 + ⋯+ 𝑋𝑋𝑛𝑛 − �𝑋𝑋 2

𝜎𝜎2
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𝜒𝜒2distribution

 This is another very popular distribution in Statistics!

 The mathematical formula describing it is quite complex, again we are 
going to use tabulated values when solving problems!
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Number of males in a queue
 An experiment has been conducted in London Tube to check the number of males 

in each of 100 queues all of length 10. The results obtained were as follows

 And the plot

Counts 0 1 2 3 4 5 6 7 8 9 10
Frequency 1 3 4 23 25 19 18 5 1 1 0
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Number of males in a queue

 Can you tell what is the underlaying parent distribution?

 Well, one could prove that the binominal one fits quite good ℬ 𝑛𝑛, 𝑝𝑝 , 𝑛𝑛 = 10 being the 
length of the queue and 𝒑𝒑 the proportion of males (check this on your own)

 We could estimate the 𝑝𝑝 using the collected sample

 What would be the weak point of this assumption?

 Can we actually come up with a generic strategy to say, the value of a parameter of interest 
is this and that?

 Yes! We can! We need to perform an experiment and run an analysis 

 Another question would be how reliable this estimate is (but we leave it for the next 
lectures)

#𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
#𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

=
1 � 0 + 3 � 1 + ⋯+ 1 � 9 + 0 � 10

1000
=

435
1000

= 𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒
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 Lets inspect the following data regarding the number of divorces in different years 
in some country in Europe

 Interesting…, very tempting to fit a model right away.

More than one way…

Year 1975 1976 1977 1978 1979 1980

# divorces
(103)

120.
5

126.7 129.1 143.7 138.7 148.3
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More than one way…

 From the plot we could conclude, that the true underlaying distribution describing 
the data can be represented by a linear model

 From the data we also conclude that the slope of the line is positive – ok, the task 
is then to estimate this slope, 𝛼𝛼, and then we could predict the annual rate of 
increase of divorces

 But how do we do that? It is not so obvious like the water example(??)

 Consider this:

 �𝛼𝛼1- join the first and the last point

 �𝛼𝛼2 - join the mid-points 𝑃𝑃1𝑃𝑃2 and 𝑃𝑃5𝑃𝑃6
 �𝛼𝛼3 - join the centroid of the first triplet and the second one

 Mind you, these are all sensible options!
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 Let’s do the calculations explicitly

 So, is there a way to make a judgement on which one of these estimates is the „best”? And what 
exactly the best means?

 The second question actually pertains to the estimator properties and not the estimate (a number 
we obtained)

 So, we need to look at the properties of the sampling distribution of respective estimators!

�𝛼𝛼1 =
148.3 − 120.5

80 − 75
=

27.8
5

= 5.6

�𝛼𝛼2 =
138.7 + 148.3 /2 − 120.5 + 126.7 /2

79.5 − 75.5
=

19.9
4

= 5.0

�𝛼𝛼3 =
143.7 + 138.7 + 148.3 /3 −⋯

79 − 76 =
18.13

3 = 6.0

The best parameters
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Analysis

 Mind one thing. This example is not quite what we could call an experiment – we 
cannot repeat year 1976 and check the number of divorces again…

 However, we can still evaluate the deviations of data from the predicted model and 
treat them as random variable

 Say, the difference (residual) 𝑟𝑟 is defined as follow:

 Next, we assume that the residual (random variable) will have a mean value and 
variance: 𝜇𝜇𝑟𝑟 and 𝜎𝜎𝑟𝑟2

 Further, we assume that the residual should have mean value equal to 0 (think 
about that!), so finally our model for the given data set is:

 We have therefore three parameters 𝛼𝛼,𝛽𝛽,𝜎𝜎𝑟𝑟2

𝑟𝑟𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝛽𝛽 + 𝛼𝛼𝑥𝑥𝑖𝑖

𝑌𝑌𝑖𝑖 = 𝛽𝛽 + 𝛼𝛼𝑥𝑥𝑖𝑖 + 𝑟𝑟𝑖𝑖

27



 Having formulated the model we can now start discussing the properties of the 
sampling distributions of our estimators

 So, we are going to treat the estimate (a number evaluated using the data):

 … as a single measurement (observation) of the random variable (the estimator)

 To come up with the answer regarding how good is such estimator we start from 
working out its mean and variance (we use the knowledge of these function of R.V. 
remembering that 𝛼𝛼,𝛽𝛽, 𝑥𝑥𝑖𝑖 are just constant numbers)

�𝛼𝛼1 =
𝑦𝑦6 − 𝑦𝑦1
𝑥𝑥6 − 𝑥𝑥1

�𝛼𝛼1 =
𝑌𝑌6 − 𝑌𝑌1
𝑥𝑥6 − 𝑥𝑥1

𝐸𝐸 𝑌𝑌𝑖𝑖 = 𝛽𝛽 + 𝛼𝛼𝑥𝑥𝑖𝑖

𝑉𝑉 𝑌𝑌𝑖𝑖 = 𝜎𝜎𝑟𝑟2
𝐸𝐸 𝑟𝑟𝑖𝑖 = 0,𝑉𝑉 𝑟𝑟𝑖𝑖 = 𝜎𝜎𝑟𝑟2

Analysis
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 Now, we can calculate the expected value of �𝛼𝛼1:

 Neat! The expected value of the estimator is exactly equal to the unknown 
parameter. Good job

 What about the other estimators?

𝐸𝐸 �𝛼𝛼1 = 𝐸𝐸
𝑌𝑌6 − 𝑌𝑌1
𝑥𝑥6 − 𝑥𝑥1

=
1

𝑥𝑥6 − 𝑥𝑥1
𝐸𝐸 𝑌𝑌6 − 𝑌𝑌1 =

=
1

𝑥𝑥6 − 𝑥𝑥1
𝐸𝐸 𝑌𝑌6 − 𝐸𝐸 𝑌𝑌1 =

1
𝑥𝑥6 − 𝑥𝑥1

𝛽𝛽 + 𝛼𝛼𝑥𝑥6 − 𝛽𝛽 + 𝛼𝛼𝑥𝑥1

𝐸𝐸 �𝛼𝛼1 =
1

𝑥𝑥6 − 𝑥𝑥1
𝛼𝛼𝑥𝑥6 − 𝛼𝛼𝑥𝑥1 = 𝛼𝛼

�𝛼𝛼2 =
1
2 𝑌𝑌5 + 𝑌𝑌6 − 1

2 𝑌𝑌1 + 𝑌𝑌2
1
2 𝑥𝑥5 + 𝑥𝑥6 − 1

2 𝑥𝑥1 + 𝑥𝑥2
�𝛼𝛼3 =?

Analysis
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 Repeating the same calculations for remaining two estimators we conclude that 
their expected values are always the same and equal exactly the unknown 
parameter we estimating

 In general we say that an estimator 𝜃̂𝜃, which we use to estimate an unknown 
parameter of a model, is unbiased for parameter 𝜽𝜽 if the following is true:

 So, it seems that all of them doing just fine. What next we can check…? The 
variance!

 In this case the best option would be to choose the one that features the least 
variability about its mean value, so:

𝐸𝐸 𝜃̂𝜃 = 𝜃𝜃

𝑉𝑉 �𝛼𝛼1 = 𝑉𝑉
𝑌𝑌6 − 𝑌𝑌1
𝑥𝑥6 − 𝑥𝑥1

=
1

𝑥𝑥6 − 𝑥𝑥1 2 𝑉𝑉 𝑌𝑌6 + 𝑉𝑉 −𝑌𝑌1 =

=
1

𝑥𝑥6 − 𝑥𝑥1 2 𝜎𝜎𝑟𝑟2 + 𝜎𝜎𝑟𝑟2 =
2𝜎𝜎𝑟𝑟2

𝑥𝑥6 − 𝑥𝑥1 2 =
2𝜎𝜎𝑟𝑟2

25

Analysis
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 Again, we can repeat the calculations for the remaining two estimators (you are
encuraged to do so!)

 We get the following:

 So: 𝑉𝑉 �𝛼𝛼2 < 𝑉𝑉 �𝛼𝛼3 < 𝑉𝑉 �𝛼𝛼1
 Using the variance we say that the best (most efficient) estimator is the �𝛼𝛼2 - thus we 

have the winner!

31

𝑉𝑉 �𝛼𝛼2 =
4𝜎𝜎𝑟𝑟2

64 𝑉𝑉 �𝛼𝛼3 =
6𝜎𝜎𝑟𝑟2

81

Analysis



 A generic „algorithm” for point estimation task would be:

 Collect the data and understand it
 Come up with a model, this will specify a parameter of many parameters that 

we need to estimate
 For a given parameter we need an estimator (typically we will concentrate on 

the mean value or variance, however we also can tackle more ambitious cases –
divorces)

 Work out the estimate of the parameter – this is a random variable and will be 
different for different data sets

 Finally, analyse the sampling distribution of the estimator to make a 
judgement of its usefulness

 We are looking for unbiased (expectation value) and efficient estimators 
(variance)

Summary so far
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 That was fun! And we learned a lot, however following such generic path each time 
we need to make an estimate seems too much

 We need a technique(s) that allows us to define sensible estimators (again, we could 
spend a lifetime on deriving estimators that are reasonable)

 So, such a technique would „automatically” come up with a formula for best
estimators

 One thing to remember – there is no universal method to achieve the above task, in 
time a number of approaches have been proposed. There is no „best” one

 We concentrate on three techniques: the method of least squares, the method of 
moments and the method of maximum likelihood

Can we do better?
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The method of least squares

 Say, we are interested in estimating the mean value of some distribution which is 𝜃𝜃. We take data 
sample: 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛

 Since the mean is „a typical” value, we conclude that the respective differences 𝑋𝑋𝑖𝑖 − 𝜃𝜃 should be 
„small” (simultaneously)

 Also, the sum of squares of these differences should be as small as possible:

 This is the method of least squares (MLS)

 As usual, an example is in order! Say we collected sample: 𝑋𝑋 = 2,4,9 and we want to estimate the 
mean value of the parent distribution these numbers came from. Applying the MLS

𝑆𝑆 = �
𝑖𝑖
𝑋𝑋𝑖𝑖 − 𝜃𝜃 2 → 𝑚𝑚𝑚𝑚𝑚𝑚

𝑆𝑆3 = �
𝑖𝑖/1

𝑖𝑖/3
𝑋𝑋𝑖𝑖 − 𝜃𝜃 2 = 2 − 𝜃𝜃 2 + 4 − 𝜃𝜃 2 + 9 − 𝜃𝜃 2 = ⋯ =

= 101 − 30𝜃𝜃 + 3𝜃𝜃2
34
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 This function will take different values for different 𝜃𝜃 – task is to identify the 𝜃𝜃 for 
which the sum is the smallest

 The minimum is attained at the point 𝜃𝜃 = 5. We can also check that the sample 
mean, 𝑥̅𝑥 = 5. Reasonable!

 So, the method gives results compatible with the common sense, that is 
encouraging!

The method of least squares



 In a general case where we have a random sample of size 𝑛𝑛 drawn from a population with an 
unknown mean value:

 This formula is minimised by: 𝜃𝜃 = 1
𝑛𝑛
∑𝑖𝑖/1
𝑖𝑖/𝑛𝑛 𝑋𝑋𝑖𝑖 = �𝑋𝑋 - the sample mean

 So, the sample mean 𝑥̅𝑥 of a random sample 𝑋𝑋 taken from a population of an unknown mean 
value (we call is here in a generic way 𝜃𝜃) is the least squares estimator 𝜃̂𝜃 (or 𝜇̂𝜇)

 The language here is important, so we are precise about what we mean!

𝑆𝑆𝑛𝑛 = �
𝑖𝑖/1

𝑖𝑖/𝑛𝑛
𝑋𝑋𝑖𝑖 − 𝜃𝜃 2 = �

𝑖𝑖/1

𝑖𝑖/𝑛𝑛
𝑋𝑋𝑖𝑖2 − 2𝜃𝜃𝑋𝑋𝑖𝑖 + 𝜃𝜃2 =

= �
𝑖𝑖/1

𝑖𝑖/𝑛𝑛
𝑋𝑋𝑖𝑖2 + 2𝜃𝜃�

𝑖𝑖/1

𝑖𝑖/𝑛𝑛
𝑋𝑋𝑖𝑖 + 𝑛𝑛𝜃𝜃2

The method of least squares
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The method of moments

 We use the common sense when introducing this approach

 We introduced the notions of population moments and sample moments, the former are 
unknown and the latter are calculated using data samples

 The method of moments (MoM) uses the sample moments and match them to the analogous 
population moments to obtain estimates for the unknown parameters. Seems simple…

 For instance we have easy example: a normal distribution 𝒩𝒩 𝜇𝜇,𝜎𝜎2 , we use sample mean and 
variance:

 Not all cases are so simple, for instance what about the Poisson distribution? Both the 
population mean and its variance are equal 𝜇𝜇. Shall we use the sample mean or variance as 
the best estimator 𝜇̂𝜇?

 Need to understand the sampling distributions to answer this!

𝜇̂𝜇 = 𝑥̅𝑥, �𝜎𝜎2 = 𝑠𝑠2 What about the median?
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 Let’s write down explicitly moment estimators for a few most popular models we 
discussed so far

 The Poisson: one unknown parameter – the mean of the distribution. Matching 
sample and population moments gives the following estimate: 𝜇̂𝜇 = 𝑥̅𝑥, the 
corresponding estimator we should use: 𝜇̂𝜇 = �𝑋𝑋

 The exponential: the mean is 1
𝜆𝜆
, matching moments �𝑋𝑋 = 1

�𝜆𝜆
. So, we get: 𝜆̂𝜆 = 1

�𝑋𝑋

 The binomial ℬ 𝑚𝑚, 𝑝𝑝 : we have one unknown parameter 𝑝𝑝. The matching 
procedure gives: �𝑋𝑋 = 𝑚𝑚𝑝̂𝑝 (𝑛𝑛 is the sample size)

𝑝̂𝑝 =
�𝑋𝑋
𝑚𝑚 =

𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑛𝑛
𝑚𝑚𝑚𝑚

The method of moments



 In practice, we are going to observe some fluctuations, let’s consider the following: 
we used a generator of random numbers distributed according to the Poisson 
model. We draw two samples:

 These variations are „normal”, we are going to observe them

 The point is that (SV – sample variance):

𝑋𝑋(1) = 5,5,2,3,4,6,4,1 ,𝑋𝑋(2) = 4,2,5,2,4,1,1,1

𝜇̂𝜇 = 𝑥̅𝑥(1) =
30
8 = 3.75

𝜇̂𝜇 = 𝑥̅𝑥(2) =
20
8 = 2.50

𝐸𝐸 �𝑋𝑋 = 𝜇𝜇, 𝑆𝑆𝑆𝑆 �𝑋𝑋 =
𝜎𝜎2

𝑛𝑛

The method of moments
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we will continue the discussion how to obtain the best 
estimators in a few weeks!

http://www.agh.edu.pl/
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