

Statistics

Computer Science

Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering

Agnieszka Obłąkowska-Mucha Tomasz Szumlak

Faculty of Physics and Applied Computer Science AGH University of Krakow

The Binomial Distribution

- We already know this distribution it emerges when we consider an experiment such as tossing a coin, rolling a die or choosing a marble from a box repeatedly.
- So, we considering trials. Each outcome will have constant probability assigned (that should not change in time, and is the parameter of the Bernoulli prob. model family).
 - Sometimes we are also interested in processes where the probability is not constant (out of the scope of our lecture, however)
- We then say that p is a success and q is a failure (in a Bernoulli sense) and can compose the following P.D.F.

$$f(x) = B(n, p) = p(X = x) = {\binom{n}{x}} p^{x} q^{n-x} = \frac{n!}{x! (n-x)!} p^{x} q^{n-x}$$

• The RV denote the number of successes x in n trials, x = 0, 1, ..., n

• The mean and variance can be fairly easy calculated:

 $\mu = \sum_{x} xP(x) = np$ $\sigma^{2} = \sum_{x} (x - \mu)^{2} P(x) = np(1 - p)$

 In the limit of "large" n and "no too small" p we can very accurately approximate the Binomial distribution with Gaussian one

Properties of the Binomial P.D.F.

Mean	$\mu = np$
Variance	$\sigma^2 = npq$
Standard deviation	$\sigma = \sqrt{npq}$
Coefficient of skewness	$\alpha_3 = \frac{q-p}{\sqrt{npq}}$
Coefficient of kurtosis	$\alpha_4 = 3 + \frac{1 - 6pq}{npq}$

- We can mote something interesting here
- **Theorem 6**. Let X be the RV giving the number of successes in n Bernouli trials, so that $\frac{X}{n}$ is the proportion of successes. Then if p is the probability of success and ϵ is any positive number:

$$\lim_{n \to \infty} prob\left(\left|\frac{X}{n} - p\right| \ge \epsilon\right) = 0$$

Poisson distribution

- The RV of discrete type:
- - the number of outcomes occurring, for instance, during a given time (e.g. number of radioactive decays in a sample of radioactive material) t: $X = X_t = 0, 1, 2, ...$
- number of events in a given region of space e.g. number of typing errors per page
- or:
 - ✓ telephone calls arriving during a (short) period of time;
 - ✓ light quanta (photons) arriving at detecting system;
 - ✓ number of mutations on a strand of DNA (per unit length);
 - ✓ number of customers arriving at a counter;
 - ✓ number of cars arriving at a trac light;
 - ✓ number of Losses/Claims;

Poisson distribution

 The probability that a single outcome will occur during a very short time interval t is PROPORTIONAL to the length of interval:

$$P(X_{\Delta t}=1) \sim \Delta t$$

Let me to introduce the Poisson distribution:

$$P(X_t = k, \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$$

fixed time period follows the Poisson distribution (given that the decay probability is constant over the time period)

The number of decays of radioactive material in a

$$f(n; n \cdot p = \lambda) = \frac{\lambda^n}{n!} e^{-\lambda}$$

- This Poisson distribution is valid for integer variable n (n = 0, 1, ...) and has a single parameter $n \cdot p = v$
- Its mean value and variance

$$E[n] = \sum_{n/0}^{\infty} n \frac{\lambda^n}{n!} e^{-\lambda} = \lambda$$
$$V[n] = \sum_{n/0}^{\infty} (n-\lambda)^2 \frac{\lambda^n}{n!} e^{-\lambda} = \lambda$$

In many cases the n can be treated as a continuous variable. Also, if v is large the Poisson random variable can be treated as a continuous variable similar to the normal distribution

 $np = 7076 \times 0.000248 = 1.75 = \lambda.$

$$\mathcal{P}(X \le 7) = \sum_{0 \le x \le 7} e^{-1.75} \frac{1.75^x}{x!} = 0.999518$$

hence $\mathcal{P}(X \ge 8) \approx 1 - 0.999518 = 0.000482.$

Uniform distribution

• Uniform P.D.F. is defined for the C.R.V. and given by

$$f(x; a, b) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{otherwise} \end{cases}$$

So, we say that x is equally likely to be found inside our interval of interest (a, b). The mean and variance:

$$E[x] = \int_{a}^{b} \frac{x}{b-a} dx = \frac{1}{2}(a+b)$$

$$V[x] = \int_{a}^{b} \left(x - \frac{1}{2}(a+b) \right)^{2} \frac{1}{b-a} dx = \frac{1}{12}(b-a)^{2}$$

There is a very important application of the uniform model related to the fact that for any R.V. x with P.D.F. f(x) we can easily find transformation to a new variable that is uniform.

Uniform distribution

 If we call the new transformed variable y, the transformation rule is simply related with calculating the C.D.F. Cool!

$$x \to y : y = F(x)$$

Remember, x – any P.D.F., y uniform P.D.F. Next, for any C.D.F. the following is true

$$\frac{dy}{dx} = \frac{d}{dx} \int_{-\infty}^{x} f(x') dx' = f(x)$$

And using the rule for change of variables

$$g(y) = f(x) \left| \frac{dx}{dy} \right| = f(x) \left| \frac{dy}{dx} \right|^{-1} = 1, \qquad (0 \le y \le 1)$$

 This is the fundamental rule of random number generator programs that can give us a list of numbers with any distribution. We are going to look at this in more detail.

- Exp. distribution describes the amount of time between some (relatively rare) events
- This model is used for C.R.V. $x: 0 \le x \le \infty$ and is defined by

$$f(x;\xi) = \frac{1}{\xi}e^{-\frac{x}{\xi}}$$

The model depends on a single parameter θ. The mean and variance are as follow:

$$E[x] = \frac{1}{\xi} \int_0^\infty x e^{-\frac{x}{\xi}} dx = \xi$$
$$V[x] = \frac{1}{\xi} \int_0^\infty (x - \xi)^2 e^{-\frac{x}{\xi}} dx = \xi^2$$

 The decay time of an unstable particle measured in its rest frame follows the exponential distribution. The parameter of the distribution is then interpreted as the mean lifetime.

Poisson and Exponential distribution

- Exp distribution: time between two events $X \to Exp(\mu) E[x] = \mu$.
- If the time between events is not affected by the times between previous events (times are independent) then number of events per unit time has Poisson distribution with λ = 1/μ:

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

 Conversely, if the number of events per unit time follows a Poisson distribution, then the amount of time between events follows the exponential distribution.

Poisson and Exponential distribution

- There is a direct connection between the exponential distribution and the Poisson distribution (process).
- We may remember that the unique parameter of **Poisson** distribution can be interpreted as a **mean number of events per unit time**.
- So, if we consider a time interval of the length t the number of events should be $N = \lambda \cdot t$
- Consider now a RV described by the time required for the first event to occur, X.
- The probability that the length of time until the event will exceed x is equal to the probability that **no** (k = 0) Poisson events will occur in x.

$$P(k=0) = \frac{(\lambda t)^0 e^{-\lambda t}}{0!}$$
 therefore: $P(X \ge x) = e^{-\lambda t}$

• CDF for *X* is: $F(x) = P(0 < X < x) = 1 - e^{-\lambda t}$

if we differentiate CDF: $f(x) = \lambda e^{-\lambda t}$ exponential distribution with $\xi = 1/\lambda$

The Normal Distribution

This is definitely one of the most fundamental PDF with great significance in statistics

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}, -\infty < x < \infty$$

$$F(x) = P(X \le x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-(\nu-\mu)^2/2\sigma^2} d\nu$$

We can also introduce the standardised variable corresponding to X

$$Z = \frac{X - \mu}{\sigma}, \mu_Z = 0, \sigma_Z = 1$$
$$f(z) = \frac{1}{\sigma\sqrt{2\pi}} e^{-z^2/2}, -\infty < z < \infty$$

$$F(z) = P(Z \le z) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{z} e^{-v^{2}/2} \, dv = \frac{1}{2} + \frac{1}{\sigma\sqrt{2\pi}} \int_{0}^{z} e^{-v^{2}/2} \, dv$$

The Normal Distribution -CDF

 In statistics we deal with two major players: probability density function *PDF* and cumulative density function *CDF*

Cumulative Density Function

Probability Density Function

The Normal Distribution

 We then call the Z the standard score and the distribution function F(Z) can be related to error function (tabulated) erf(z)

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_{-\infty}^{z} e^{-u^{2}} dv \qquad F(z) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{z}{\sqrt{2}}\right) \right]$$

$$p(-1 < z < 1) = 0.6827$$

$$p(-2 < z < 2) = 0.9545$$

$$p(-3 < z < 3) = 0.9973$$

The Z score tells how many standard deviations the value x is above (to the right of) or below (to the left of) the mean, μ.

The empirical rule known as the 68-95-99.7 rule.

Exercise (use statistical tables and calculator only):

A citrus farmer who grows mandarin oranges finds that the diameters of mandarin oranges harvested on his farm follow a normal distribution with a mean diameter of 5.85 cm and a standard deviation of 0.24 cm.

- a) Find the probability that a randomly selected mandarin orange from this farm has a diameter larger than 6.0 cm. Sketch the graph.
- b) The middle 20% of mandarin oranges from this farm have diameters between _____ and _____.
- c) Find the 90th percentile for the diameters of mandarin oranges, and interpret it in a complete sentence.
- d) The middle 40% of mandarin oranges from this farm are between _____ and _____.
- e) Find the 16th percentile and interpret it in a complete sentence.

The properties of the Gaussian distribution

Mean	μ
Variance	σ^2
Standard deviation	σ
Coefficient of skewness	$\alpha_3 = 0$
Coefficient of kurtosis	$\alpha_4 = 3$

Relation between binomial and normal distribution

$$Z = \frac{X - np}{\sqrt{npq}}$$

$$\lim_{n \to \infty} p\left(a \le \frac{X - np}{\sqrt{npq}} \le b\right) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-v^2/2} \, dv$$

• We say, that the variable $\frac{X-np}{\sqrt{npq}}$ is **asymptotically normal**!

Statistics - Computer Science - AGH University of Krakow