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Experimental errors

 Is this statement correct from experimental point of view?

A particle falling under the influence of gravity is subject to a constant acceleration of 9.8 m/s2.

 For an experimental scientist this specification is incomplete.

Better:

A 5 g ball bearing falling under the influence of gravity in 
Room 108 was measured to be subject to a constant 
acceleration of 9.81 ± 0.03 m/ s2.

 What kind of errors (we also call them uncertainties since errors 
sound bad) are associated with this statement?

 Is this measurement:

 accurate?

 precise?
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Experimental errors – two types

 Experimental uncertainty (error) generally can be classified as being of two types: 

 random or statistical error 

 systematic error 

 Statistical Error - random errors result from unknown and unpredictable variations that 
arise in all experimental measurement situations. 

 There is no way to determine the magnitude or sign (+, too large; –, too small) of the 
error in any individual measurement. 

 Conditions in which random errors can result include: 

o Unpredictable fluctuations in temperature or line voltage. 

o Mechanical vibrations of an experimental setup. 

o Unbiased estimates of measurement readings by the observer. 

 Repeated measurements with random errors give slightly different values each time. The 
effect of random errors may be reduced and minimized by improving and refining 
experimental techniques.
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Systematic errors

 Systematic (Determinate) Errors 

 Systematic errors are associated with particular measurement instruments or 
techniques, such as an improperly calibrated instrument or bias on the part of the 
observer. 

 The term systematic implies that the same magnitude and sign of experimental 
uncertainty are obtained when the measurement is repeated several times.

 Determinate means that the magnitude and sign of the uncertainty can be 
determined if the error is identified. 
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 Conditions from which systematic errors can result include 

 An improperly “zeroed” instrument, 

 A faulty instrument,

 Personal error.
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Experimental errors

 The accuracy of a measurement signifies how close it comes to the 
true (or accepted) value - that is, how nearly correct it is. 

 Precision refers to the agreement among repeated measurements—
that is, the “spread” of the measurements or how close they are 
together. The more precise a group of measurements, the closer 
together they are. 
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A large degree of precision does not necessarily imply 
accuracy.

https://byjus.com/physics/accuracy-precision-measurement/
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Example:

Two independent experiments give two sets of data with the expressed results and uncertainties 
of :

 2.5 ± 0.1 cm 
 2.5 ± 0.2 cm.

 The first result is more precise than the second:

 the spread in the first set of measurements is between 2.4 and 2.6 cm,
 the spread in the second set of measurements is between 2.3 and 2.7 cm. 

That is, the measurements of the first experiment are less uncertain than those of the second. 

 Obtaining greater accuracy for an experimental value depends in general on minimizing 
systematic errors. 

 Obtaining greater precision for an experimental value depends on minimizing random errors. 

Accuracy and precision



Estimating experimental errors
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 Standard error:

 for large number 𝑁𝑁 of measurements of a single quantity t:

𝜎𝜎 – standard deviation (measure of the width), RMS.

 Single measurement with the result of 𝑁𝑁𝑘𝑘 counts:

 standard deviation is: 𝜎𝜎 = 𝑁𝑁𝑘𝑘



Combination of errors
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 Independent variables:
The measured quantity is derived from a number of measured, and usually independent variables , 𝑥𝑥,𝑦𝑦, 𝑧𝑧, … ,
connected to 𝐹𝐹, 𝐹𝐹=𝑓𝑓(𝑥𝑥,𝑦𝑦,𝑧𝑧,.......).

The effect of uncertainties of the measured values 𝑥𝑥,𝑦𝑦, 𝑧𝑧, … , on 𝐹𝐹 is:

the standard error 𝝈𝝈𝑭𝑭:

This assumes that all quantities 𝑥𝑥,𝑦𝑦,𝑧𝑧,... are independent of each other.

𝛿𝛿𝑥𝑥 - the maximal error of the 
quantity 𝑥𝑥



An experiment

 Let’s try to analyse the following setup

We want to measure unknown resistance 𝑅𝑅2

 What are the possible sources of systematic uncertainties?

 Wrong calibration of voltmeters – may also be important if we use one or 
two devices

 The calibration of the resistance meter
 Type of power supply (AC – may introduce effects dependent on 

capacitances)
 Resistors may be temperature dependent 
 Impedances of the voltmeters may be not large enough
 Electromagnetic pick-up (ambient)

𝑅𝑅2 =
𝑉𝑉2 − 𝑉𝑉1
𝑉𝑉1

𝑅𝑅1
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Combining errors

 Let’s consider the circuit from the previous slide and try to work out the error 
calculation from start to end, we assume that the following were measured:

 The first error for each measurement is the random one, the second is the possible 
systematic error related to each meter

 Often, a single number is worked out from both errors, in that case we add them in 
quadrature. We get:

𝑅𝑅1 = 2.2 ± 0.1 𝑘𝑘Ω ± 1% 𝑉𝑉1 = 1.0 ± 0.02 𝑉𝑉 ± 10% 𝑉𝑉2 = 1.5 ± 0.02 𝑉𝑉 ± 10%

𝜎𝜎𝑅𝑅1
(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝜎𝜎𝑅𝑅1

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 2
+ 𝜎𝜎𝑅𝑅1

(𝑆𝑆𝑆𝑆𝑆𝑆) 2
= 0.1 2 + 2.21 � 0.01 2 = 0.1 𝑘𝑘Ω

𝜎𝜎𝑉𝑉1
(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝜎𝜎𝑉𝑉1

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 2
+ 𝜎𝜎𝑉𝑉1

(𝑆𝑆𝑆𝑆𝑆𝑆) 2
= 0.02 2 + 1.02 � 0.1 2 = 0.10 𝑉𝑉Ω

𝜎𝜎𝑉𝑉2
(𝑇𝑇𝑇𝑇𝑇𝑇) = 𝜎𝜎𝑉𝑉2

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 2
+ 𝜎𝜎𝑉𝑉2

(𝑆𝑆𝑆𝑆𝑆𝑆) 2
= 0.02 2 + 1.52 � 0.1 2 = 0.15 𝑉𝑉Ω
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 So, how well we know the nominator of the circuit equation 𝑉𝑉2 − 𝑉𝑉1?

 We consider both cases without and with correlations. (BTW, we added systematic and statistical 
errors in quadrature assuming they are not correlated, what do you think about it?)

 Say, we used different meters – so no correlations are expected between the systematic uncertainties:

 If we use the same meter (the same systematic on result):

 It is convenient to remember that the systematic error can be treated as a scale factor, e.g.,: 𝑓𝑓 =
1.00 ± 10%

Combining errors

𝑉𝑉2 − 𝑉𝑉1 = 1.50 ± 0.15 − 1.0 ± 0.10 = 𝟎𝟎.𝟓𝟓𝟓𝟓 ± 𝟎𝟎.𝟏𝟏𝟏𝟏 𝑽𝑽

𝑉𝑉2 − 𝑉𝑉1 = 1.50 ± 0.02 − 1.0 ± 0.02 ± 10% = 0.5 ± 0.03 ± 10% = 𝟎𝟎.𝟓𝟓𝟓𝟓 ± 𝟎𝟎.𝟎𝟎𝟎𝟎 𝑽𝑽

𝑀𝑀(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = 𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) � 𝑓𝑓
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 So, for our case: 𝑉𝑉1
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) − 𝑉𝑉2

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑉𝑉1
(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) − 𝑉𝑉2

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓

 There is something extremally interesting here to note! If the meter suffers from a systematic „zero 
error” (the zero of the scale is in fact not zero), this would have no impact on the final result (in case 
of subtraction)

 In turn, if we consider measuring the ratio: 𝑉𝑉2/𝑉𝑉1 the scale error is now irrelevant! But the ratio is 
sensitive to the zero error.

 Let’s work out now the error for 𝑅𝑅2

 We rewrite the circuit equation to be:

 We start from the error on the voltage ratio

Combining errors

𝑅𝑅2 =
𝑉𝑉2
𝑉𝑉1
− 1 𝑅𝑅1

𝑟𝑟 =
𝑉𝑉2
𝑉𝑉1

=
1.50 ± 0.02
1.0 ± 0.02

= 1.50 ± 0.03
𝜎𝜎𝑟𝑟
𝑟𝑟

2
=

𝜎𝜎𝑉𝑉1
𝑉𝑉1

2

+
𝜎𝜎𝑉𝑉1
𝑉𝑉1

2
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 Next step seems trivial

 However, we should note that although the absolute errors are the same, obviously, the 
fractional error for this step is much larger!

 Finally, the 𝑅𝑅2 = 1.0 ± 0.08 𝑘𝑘Ω (mind the formula on the last slide)

 What about the case where the meters are different? Try to work it out yourself. 

 And finally, what about using from start our formula for error propagation? (We followed it 
already when combining the sys and stat errors for respective variables) Try it out as well:

𝑉𝑉2
𝑉𝑉1
− 1 = 0.50 ± 0.03

Combining errors

𝑅𝑅2 = 𝑓𝑓 𝑉𝑉1,𝑉𝑉2,𝑅𝑅1

𝜎𝜎2 𝑅𝑅2 = �
𝑖𝑖

𝜕𝜕𝑅𝑅2
𝜕𝜕𝑋𝑋𝑖𝑖

2

� 𝜎𝜎2 𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑖𝑖 = 𝑉𝑉1,𝑉𝑉2,𝑅𝑅1
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Different experiments

 Very often we face the following task: the same quantity was measured by different experiments with 
different precision. How should we calculate the combined result and its corresponding error?

 We use the following expressions (we measure R)

 Formally, it is so called weighted mean, where results from respective experiments are weighted by 
their variances (precisions). 

 It is not so trivial to prove this is the best approach but we come back to this formula when discussing 
fitting and estimation. For now remember that we interpreted the variance as the measure of amount 
of information content.

𝑹𝑹 =
∑𝑖𝑖
𝑅𝑅𝑖𝑖
𝜎𝜎𝑖𝑖2

∑𝑖𝑖
1
𝜎𝜎𝑖𝑖2

,
𝟏𝟏
𝝈𝝈𝑹𝑹𝟐𝟐

= �
𝑖𝑖

1
𝜎𝜎𝑖𝑖2
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Different experiments

 Let’s see the above in action

 Consider that all experiments feature the same precision σ = 𝜎𝜎𝑖𝑖, then the best combined value for R 
would be just a simple mean (average) and it error: 𝜎𝜎𝑅𝑅 = �𝜎𝜎𝑖𝑖 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒. Note the difference between error for 

a given quantity and the error of its mean value ( 𝑛𝑛).

 Imagine we measured the same quantity using the same apparatus, but we repeated it N and M times 
respectively. Does the formula from the last slide still holds? Check it!

�𝑅𝑅𝑁𝑁 =
1
𝑁𝑁
�

𝑖𝑖
𝑅𝑅𝑖𝑖 ,𝜎𝜎𝑅𝑅𝑁𝑁 =

𝜎𝜎
𝑁𝑁

�𝑅𝑅𝑀𝑀 =
1
𝑀𝑀
�

𝑖𝑖
𝑅𝑅𝑖𝑖 ,𝜎𝜎𝑅𝑅𝑀𝑀 =

𝜎𝜎
𝑀𝑀

�𝑅𝑅𝑁𝑁+𝑀𝑀 =
1

𝑁𝑁 + 𝑀𝑀
�

𝑗𝑗
𝑅𝑅𝑗𝑗 ,𝜎𝜎𝑅𝑅𝑁𝑁+𝑀𝑀 =

𝜎𝜎
𝑁𝑁 + 𝑀𝑀
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More variables

 Especially important for the inference is operating with samples of measurements (data), and 
usually we have 𝒏𝒏 of them

 Define the CDF for this case:

 And the PDF in this case:

 Any marginal PDF of RV 𝑥𝑥𝑘𝑘

 … and the mean value for 𝑥𝑥𝑘𝑘

𝐹𝐹 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 = 𝑃𝑃 𝑋𝑋1 < 𝑥𝑥1,𝑋𝑋2 < 𝑥𝑥2, … ,𝑋𝑋𝑛𝑛 < 𝑥𝑥𝑛𝑛

𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 =
𝜕𝜕𝑛𝑛

𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2 ⋯𝜕𝜕𝑥𝑥𝑛𝑛
𝐹𝐹 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛

𝑔𝑔𝑘𝑘 𝑥𝑥𝑘𝑘 = �
−∞

+∞
⋯�

−∞

+∞
𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 𝑑𝑑𝑑𝑑1𝑑𝑑𝑥𝑥2 ⋯𝑑𝑑𝑑𝑑𝑘𝑘−1𝑑𝑑𝑥𝑥𝑘𝑘+1 ⋯𝑑𝑑𝑥𝑥𝑛𝑛

𝐸𝐸 𝑥𝑥𝑘𝑘 = 𝜇𝜇𝑘𝑘 = �
−∞

+∞
⋯�

−∞

+∞
𝑥𝑥𝑘𝑘𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 𝑑𝑑𝑑𝑑1𝑑𝑑𝑥𝑥2 ⋯𝑑𝑑𝑥𝑥𝑛𝑛
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More variables

 And the same using the marginal PDF of 𝑥𝑥𝑘𝑘

 Now, in this convention let’s write out the mean, variance and covariance

 We can also introduce a pseudo-vector notation

𝐸𝐸 𝑥𝑥𝑘𝑘 = 𝜇𝜇𝑘𝑘 = �
−∞

+∞
𝑥𝑥𝑘𝑘𝑔𝑔𝑘𝑘 𝑥𝑥𝑘𝑘 𝑑𝑑𝑥𝑥𝑘𝑘

𝐸𝐸 𝑥𝑥𝑖𝑖 = 𝝁𝝁𝒊𝒊 𝐸𝐸 𝑥𝑥𝑖𝑖 − 𝐸𝐸 𝑥𝑥𝑖𝑖 2 = 𝐸𝐸 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖 2 = 𝝈𝝈𝒊𝒊𝟐𝟐

𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 = 𝐸𝐸 𝑥𝑥𝑖𝑖 − 𝐸𝐸 𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗 − 𝐸𝐸 𝑥𝑥𝑗𝑗 = 𝐸𝐸 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖 𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗 = 𝒄𝒄𝒊𝒊𝒊𝒊

𝑥⃗𝑥 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 , 𝑋⃗𝑋 = 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 𝑓𝑓 𝑥⃗𝑥 =
𝜕𝜕𝑛𝑛

𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2 ⋯𝜕𝜕𝑥𝑥𝑛𝑛
𝐹𝐹 𝑥⃗𝑥

Nice and compact!
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More variables
 We can also put all our variances and covariances in one structure that we call 

covariance matrix

 Also, we can do similar thing („vectorisation”) for the means

 The respective elements can be written explicitly (take 2 RV)

𝒞𝒞 =
𝑐𝑐11 ⋯ 𝑐𝑐1𝑛𝑛
⋮ ⋱ ⋮
𝑐𝑐𝑛𝑛𝑛 ⋯ 𝑐𝑐𝑛𝑛𝑛𝑛

𝑐𝑐𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖2, 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑗𝑗𝑗𝑗

𝐸𝐸 𝑥⃗𝑥 = 𝜇⃗𝜇 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝐸𝐸 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖 𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗

𝓒𝓒 = 𝑬𝑬 𝒙𝒙 − 𝝁𝝁 𝒙𝒙 − 𝝁𝝁 𝑻𝑻

𝑥⃗𝑥 =
𝑥𝑥1
𝑥𝑥2 , 𝑥⃗𝑥𝑇𝑇 = 𝑥𝑥1, 𝑥𝑥2 𝜇⃗𝜇 =

𝜇𝜇1
𝜇𝜇2 , 𝜇⃗𝜇𝑇𝑇 = 𝜇𝜇1, 𝜇𝜇2
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More variables

 Now make the complete calculations

 We can use our new and compact notation to derive one super important rule in 
statistics: error propagation formula

 It combines variable change and multivariate functions of RV

 Interested already? Go to the next page!

𝑥⃗𝑥 − 𝜇⃗𝜇 𝑇𝑇 = 𝑥𝑥1 − 𝜇𝜇1, 𝑥𝑥2 − 𝜇𝜇2 , 𝑥⃗𝑥 − 𝜇⃗𝜇 =
𝑥𝑥1 − 𝜇𝜇1
𝑥𝑥2 − 𝜇𝜇2

𝐸𝐸 𝑥⃗𝑥 − 𝜇⃗𝜇 𝑥⃗𝑥 − 𝜇⃗𝜇 𝑇𝑇 =
𝑥𝑥1 − 𝜇𝜇1
𝑥𝑥2 − 𝜇𝜇2 𝑥𝑥1 − 𝜇𝜇1, 𝑥𝑥2 − 𝜇𝜇2 =

= 𝑥𝑥1 − 𝜇𝜇1 𝑥𝑥1 − 𝜇𝜇1 𝑥𝑥1 − 𝜇𝜇1 𝑥𝑥2 − 𝜇𝜇2
𝑥𝑥2 − 𝜇𝜇2 𝑥𝑥1 − 𝜇𝜇1 𝑥𝑥2 − 𝜇𝜇2 𝑥𝑥2 − 𝜇𝜇2

= 𝜎𝜎12 𝑐𝑐12
𝑐𝑐21 𝜎𝜎22
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Error propagation rule

 First some background… Imagine the following problem: in order to measure a quantity 𝒚𝒚 (can be more than 
one of these) we measure 𝒏𝒏 R.V.s 𝒙𝒙𝒊𝒊:

 So, we can define a joint PDF, 𝑓𝑓(𝑥⃗𝑥), but again usually we do not know its form but instead we can estimate 
respective mean values 𝜇⃗𝜇 = 𝜇𝜇1, 𝜇𝜇2, … , 𝜇𝜇𝑛𝑛 and covariance matrix 𝑐𝑐𝑖𝑖𝑖𝑖

 Ok, back to our 𝑦𝑦 𝑥⃗𝑥 . In principle we could follow the whole procedure of the variable change, but we can 
also just live with estimating the mean 𝑬𝑬 𝒚𝒚 and variance 𝑽𝑽 𝒚𝒚 .

 The technique to be applied relies on using Taylor series expansion about the mean values of 𝑥⃗𝑥 (like asking 
what are the typical 𝑦𝑦 value for typical 𝑥𝑥𝑖𝑖?)

𝑥⃗𝑥 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛

𝑦𝑦 𝑥⃗𝑥 = �
𝑘𝑘/0

𝑘𝑘/∞
𝑦𝑦(𝑘𝑘) 𝑥⃗𝑥=𝑐𝑐

𝑘𝑘! 𝑥⃗𝑥−𝑐𝑐 𝑘𝑘

𝑦𝑦 𝑥⃗𝑥 = 𝑦𝑦 𝜇⃗𝜇 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1 𝑥𝑥1=𝜇𝜇1

𝑥𝑥1 − 𝜇𝜇1 + ⋯+
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛 𝑥𝑥𝑛𝑛=𝜇𝜇𝑛𝑛

𝑥𝑥𝑛𝑛 − 𝜇𝜇𝑛𝑛 + ⋯

Statistics - Computer Science AGH University of Krakow 20



 We stop the expansion after the first element

 In principle we could expand it about any point, but we use the fact that 𝐸𝐸 𝑥𝑥𝑙𝑙 − 𝜇𝜇𝑙𝑙 = 0
(sneaky!), 𝑬𝑬[𝒚𝒚] ≈ 𝒚𝒚 𝝁𝝁

𝜎𝜎𝑦𝑦2 = 𝐸𝐸 𝑦𝑦2 − 𝐸𝐸2 𝑦𝑦 , so… we just need to know the first term

𝑦𝑦 𝑥⃗𝑥 ≈ 𝑦𝑦 𝜇⃗𝜇 + �
𝑙𝑙/1

𝑙𝑙/𝑛𝑛 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙 𝑥𝑥𝑙𝑙=𝜇𝜇𝑙𝑙

𝑥𝑥𝑙𝑙 − 𝜇𝜇𝑙𝑙

𝐸𝐸 𝑦𝑦2 𝑥⃗𝑥 ≈ 𝑦𝑦2 𝜇⃗𝜇 + 2𝑦𝑦 𝜇⃗𝜇 ��
𝑙𝑙/1

𝑙𝑙/𝑛𝑛 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙 𝑥𝑥𝑙𝑙=𝜇𝜇𝑙𝑙

𝐸𝐸[ 𝑥𝑥𝑙𝑙 − 𝜇𝜇𝑙𝑙 ] +

+𝐸𝐸 �
𝑙𝑙/1

𝑙𝑙/𝑛𝑛 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙 𝑥𝑥𝑙𝑙=𝜇𝜇𝑙𝑙

𝑥𝑥𝑙𝑙 − 𝜇𝜇𝑙𝑙 �
𝑗𝑗/1

𝑗𝑗/𝑛𝑛 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗 𝑥𝑥𝑗𝑗=𝜇𝜇𝑗𝑗

𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗

�
𝑙𝑙,𝑗𝑗/1

𝑙𝑙,𝑗𝑗/𝑛𝑛 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗 𝑥⃗𝑥=𝜇𝜇

𝐸𝐸 𝑥𝑥𝑙𝑙 − 𝜇𝜇𝑙𝑙 𝑥𝑥𝑗𝑗 − 𝜇𝜇𝑗𝑗
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 Finally, we get

 And beyond… We can have many composite variables that depend on what we measure: 𝑦⃗𝑦 =
𝑦𝑦1 𝑥⃗𝑥 , 𝑦𝑦2 𝑥⃗𝑥 , … ,𝑦𝑦𝑚𝑚 𝑥⃗𝑥 , so we can get a covariance matrix for all 𝒚𝒚s:

𝐸𝐸 𝑦𝑦2 𝑥⃗𝑥 ≈ 𝑦𝑦2 𝜇⃗𝜇 + �
𝑙𝑙,𝑗𝑗/1

𝑙𝑙,𝑗𝑗/𝑛𝑛 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗 𝑥⃗𝑥=𝜇𝜇

𝑐𝑐𝑙𝑙𝑙𝑙

𝜎𝜎𝑦𝑦2 ≈�
𝑙𝑙,𝑗𝑗/1

𝑙𝑙,𝑗𝑗/𝑛𝑛 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗 𝑥⃗𝑥=𝜇𝜇

𝑐𝑐𝑙𝑙𝑙𝑙

𝑢𝑢𝑘𝑘𝑘𝑘 ≈�
𝑖𝑖,𝑗𝑗/1

𝑖𝑖,𝑗𝑗/𝑛𝑛 𝜕𝜕𝑦𝑦𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑦𝑦𝑙𝑙
𝜕𝜕𝑥𝑥𝑗𝑗 𝑥⃗𝑥=𝜇𝜇

𝑐𝑐𝑖𝑖𝑖𝑖
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 And an elegant matrix form

 Very often we deal with 𝒏𝒏 measurements – which can be treated as independent R.V. (I.R.V.), the 
consequence is that all terms off the diagonal in the covariance matrix are 0, or we have some function that 
depend on 𝒏𝒏 I.R.V. (𝑐𝑐𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖2, 𝑐𝑐𝑖𝑖𝑖𝑖 = 0)

𝒰𝒰 = 𝒯𝒯𝒯𝒯𝒯𝒯𝑇𝑇

𝓉𝓉𝑖𝑖𝑖𝑖 =
𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗 𝑥⃗𝑥=𝜇𝜇

𝜎𝜎𝑦𝑦2 ≈�
𝑗𝑗/1

𝑗𝑗/𝑛𝑛 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗 𝑥⃗𝑥=𝜇𝜇

2

𝜎𝜎𝑗𝑗2 𝑢𝑢𝑘𝑘𝑘𝑘 ≈�
𝑗𝑗/1

𝑗𝑗/𝑛𝑛 𝜕𝜕𝑦𝑦𝑘𝑘
𝜕𝜕𝑥𝑥𝑗𝑗

𝜕𝜕𝑦𝑦𝑙𝑙
𝜕𝜕𝑥𝑥𝑗𝑗 𝑥⃗𝑥=𝜇𝜇

𝜎𝜎𝑗𝑗2
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Using the rule

 Let’s assume a very simple example: 𝑦𝑦 𝑥⃗𝑥 = 𝑥𝑥1 + 𝑥𝑥2 and 𝑦𝑦 𝑥⃗𝑥 = 𝑥𝑥1 � 𝑥𝑥2, by 
applying the rule directly we have:

 The covariance is sensitive to addition/subtraction if RV are not independent!

 So, we have a very nice tool to handle our data which will help us to calculate 
uncertainties. If the form of the transformations or the functions are not well 
approximated by linear formulas then our assumptions break and we should use the 
confidence interval instead (see future lectures!)

𝜎𝜎𝑦𝑦+2 = �
𝑙𝑙,𝑗𝑗/1

𝑙𝑙,𝑗𝑗/𝑛𝑛 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗 𝑥⃗𝑥=𝜇𝜇

𝑐𝑐𝑙𝑙𝑙𝑙 = 𝜎𝜎12 + 𝜎𝜎22 + 𝟐𝟐𝒄𝒄𝟏𝟏𝟏𝟏

𝜎𝜎𝑦𝑦�2 = 𝑦𝑦2
𝜎𝜎12

𝑥𝑥12
+
𝜎𝜎22

𝑥𝑥22
+
𝟐𝟐𝒄𝒄𝟏𝟏𝟏𝟏
𝑥𝑥1𝑥𝑥2

Statistics - Computer Science AGH University of Krakow 24



Something for ML Enthusiasts

 We saw, that when propagated errors the crucial role is played by the transformations (functions)

 One simple linear transformation is rotation in 2d space which is very popular in data analysis, 
computer vision etc.

 Formally we call it an orthogonal transformation

 When using ML to solve problems we find that we are having way too many variables – it would 
be useful to reduce them!

 One way to do that is decorrelation! This, as we see can be interpreted as just rotation.

 The task: we have 𝑛𝑛 RVs 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 and the covariance matrix has off-diagonal elements that 
are not all equal 0, we want to find a new set of RVs 𝑦𝑦1, 𝑦𝑦2, … ,𝑦𝑦𝑛𝑛 for which 𝑢𝑢𝑖𝑖𝑖𝑖 = 0

 We postulate it is always possible with a linear transformation like this

𝑦𝑦𝑖𝑖 = �
𝑗𝑗/1

𝑗𝑗/𝑛𝑛
𝓉𝓉𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗
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 Let’s calculate the covariances for 𝑦𝑦s

 Ok guys… we are back at the error propagation formula!

 Our task then is to find a matrix 𝒯𝒯 to make 𝒰𝒰 = 𝒯𝒯𝒯𝒯𝒯𝒯𝑇𝑇 diagonal

 Very well known problem: first we need to find the e-vectors 𝜆𝜆(𝑖𝑖), 𝑖𝑖 = 1,2, … ,𝑛𝑛 of the covariance matrix 𝒞𝒞

 In this procedure the e-vectors are determined up to a multiplicative factor, which can be set by requiring 
all 𝜆𝜆(𝑖𝑖) should have unit length

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑗𝑗 = 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑙𝑙/1

𝑙𝑙/𝑛𝑛
𝓉𝓉𝒊𝒊𝒊𝒊𝑥𝑥𝑙𝑙 ,�

𝑘𝑘/1

𝑘𝑘/𝑛𝑛
𝓉𝓉𝒋𝒋𝒋𝒋𝑥𝑥𝑘𝑘 =

= �
𝑙𝑙,𝑘𝑘/1

𝑙𝑙,𝑘𝑘/𝑛𝑛
𝓉𝓉𝑖𝑖𝑖𝑖𝓉𝓉𝑗𝑗𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥𝑙𝑙 , 𝑥𝑥𝑘𝑘 = �

𝑙𝑙,𝑘𝑘/1

𝑙𝑙,𝑘𝑘/𝑛𝑛
𝓉𝓉𝑖𝑖𝑖𝑖𝑐𝑐𝑙𝑙𝑙𝑙𝓽𝓽𝒌𝒌𝒌𝒌𝑻𝑻

𝒞𝒞𝜆𝜆(𝑖𝑖) = 𝜆𝜆𝑖𝑖𝜆𝜆(𝑖𝑖)
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 When a matrix is symmetric the e-vecs are always orthogonal

 This is always true for the covariance matrix! So, we have

 We can proceed as follow: rows of the 𝒯𝒯(= 𝜆𝜆𝑗𝑗𝑖𝑖) matrix are the e-vectors, and the columns of 𝒯𝒯𝑇𝑇(= 𝜆𝜆𝑖𝑖
𝑗𝑗) are the 

e-vectors, then

 Variances of new RVs are expressed as e-values of the original covariance matrix 𝒞𝒞 and 𝒯𝒯𝒯𝒯𝑇𝑇 = 1, thus, 𝒯𝒯𝑇𝑇 =
𝒯𝒯−1

𝜆𝜆(𝑖𝑖) � 𝜆𝜆 𝑗𝑗 = �
𝑘𝑘/1

𝑘𝑘/𝑛𝑛
𝜆𝜆𝑘𝑘𝑖𝑖 𝜆𝜆𝑘𝑘

𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑖𝑖

𝑢𝑢𝑖𝑖𝑖𝑖 = �
𝑙𝑙,𝑘𝑘/1

𝑙𝑙,𝑘𝑘/𝑛𝑛
𝓉𝓉𝑖𝑖𝑖𝑖𝑐𝑐𝑙𝑙𝑙𝑙𝓉𝓉𝑘𝑘𝑘𝑘𝑇𝑇 = �

𝑙𝑙,𝑘𝑘/1

𝑙𝑙,𝑘𝑘/𝑛𝑛
𝜆𝜆𝑖𝑖𝑙𝑙𝒄𝒄𝒍𝒍𝒍𝒍𝜆𝜆𝑗𝑗𝑘𝑘 = �

𝑙𝑙/1

𝑙𝑙/𝑛𝑛
𝜆𝜆𝑖𝑖𝑙𝑙𝝀𝝀𝒋𝒋𝜆𝜆𝑗𝑗𝑙𝑙 = 𝜆𝜆𝑗𝑗𝜆𝜆(𝑖𝑖) � 𝜆𝜆 𝑗𝑗

𝑢𝑢𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖
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 For two dimensions this is a simple calculation, for more we just use computer 
programs. In the case of 2d it can be shown:

𝒞𝒞 = 𝜎𝜎12 𝜌𝜌𝜎𝜎1𝜎𝜎2
𝜌𝜌𝜌𝜌1𝜎𝜎2 𝜎𝜎12

𝜆𝜆(1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜆𝜆(2) = −𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝜃𝜃 =
1
2
𝑡𝑡𝑔𝑔−1

2𝜌𝜌𝜎𝜎1𝜎𝜎2
𝜎𝜎12 − 𝜎𝜎22
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𝑥𝑥(𝑖𝑖) = 𝑥𝑥1
(𝑖𝑖), … , 𝑥𝑥𝑛𝑛

(𝑖𝑖) - one instance
𝑥𝑥𝑗𝑗 =

𝑥𝑥𝑗𝑗
(1)

.

.

.
𝑥𝑥𝑗𝑗

(𝑚𝑚)
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