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Lectures 30 hours
Tutorials 15 hours (compulsory!)
Computer Labs 15 hours (compulsory!)
Final grades — 0.2 lecture activity 0.4 tutorial + 0.4 labs
Note, you may not fail neither tutorial nor labs
Please make sure in advance that you have computer account with the Uni!
Our contact details

O Agnieszka Obtgkowska-Mucha (lectures): amucha@agh.edu.pl
Saliha Bashir (tutorials and labs): bashir@agh.edu.pl

O Building D11/106

Statistics - Computer Science AGH University of Krakow
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* Course web page: https://agnieszkamucha.github.io/Statistics-
ComputerScience/

e Textbook: Introductory Statistics, OpenStax Access online
* Lectures: slides with discussions
* Computer Laboratory: follow the instructions, complete tasks

e Tutorials:
1. find assignments BEFORE the day of tutorial
2. find and read matching lecture or chapter in textbook

3. solve or think over the assighments

Statistics - Computer Science AGH University of Krakow
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e Our primary concern in Statistics is analysing data collected from an experiment — this is
an essential notion and we should define it well

e Just asin the lab, we define an experiment as a procedure to be followed — the outcome
of this procedure constitutes the result which can be represented as a single quantity or a
set of quantities or a distribution

 These measured quantities can be discrete or continuous

* Note: no matter how accurately all conditions of the experiment are maintained, its results
will in general differ — the measurement has an intrinsic random component

* This can be attributed to the very nature of the observed phenomenon or limited accuracy
of the measurement

e This is why we should always use statistics to process the results of an experiment and
understand them

Result = Value + Uncertainty |[UNIT]

Statistics - Computer Science AGH University of Krakow
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== Cholera outbreak in 1854 in London

EXCELLENCE INITIATIVE

https://en.wikipedia.org/wiki/1854

Broad Street cholera outbreak
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https://en.wikipedia.org/wiki/Florence_Nightingale
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P Hypothesis

COVID-19 vaccines did not work
and killed people.
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cb Data

* Imagine we live in a place with a population of 60 people.

* 10 people died because of Covid-19. And we learn that 50% of them were vaccinated.

The newspaper may read, “Half of those who
died from the virus were vaccinated.”

5 of those who died were unvaccinated
5 of those who died were vaccinated

;000000000
000000000
000000000
2000000000
2000000000

0000
o e X e Ye.

We need to know about those who did not die:
how many people in this population were
vaccinated? And how many were not
vaccinated?

https://ourworldindata.org/covid-deaths-by-vaccination 9
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Data

10 were unvaccinated E-E} were vaccinated

22000000000
22000000000
22000000000
)
)

)

* Now we have all the information we need and can calculate the death rates:
« Of 10 unvaccinated people, 5 died — the death rate among the unvaccinated is 50%.
« Of 50 vaccinated people, 5 died — the death rate among the vaccinated is 10%.

« We, therefore, see that the death rate among the vaccinated is 5 times lower than among
the unvaccinated.

https://ourworldindata.org/covid-deaths-by-vaccination 10
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Data

United States: COVID-19 weekly death rate by vaccination status, All Our World
ages

Death rates are calculated as the number of deaths in each group, divided by the total number of people in this group. This
is given per 100,000 people.

in Data

LINEAR | LOG = Change age group

25 Jan 22,2022
® Unvaccinated 26.01
70 ® Vaccinated without bivalent booster  2.79
15
10
5

Urvaccinated

Waccinated without bivalent
_—_—-——¢~—/.\.L pooster
0 — - e sa Vaccinated with bivalent booster

Oct 9,2021 Feb?,2022 May 20,2022 Dec 3,2022

Source: Centers for Disease Control and Prevention, Vaccing 2easlsthesuah S ryefllance and Analytics Team
Mote: The mortality rate for the ‘all ages' group is age-stands [Bez tytutu] hunt for the different vaccination rates of older and younger people.
OurworldinData.orgfcoronavirus = CCBY

CHART TABLE SOURCES & DOWNLOAD -

11
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Data

Switzerland: COVID-19 weekly death rate by vaceination status, All Our World
azes

Death rates are calculated as the number of deaths ineach group, divided by the total number of people in this group. This
is given per 100,000 people.

LOG  Change age group

in Data

10 Dec 19,2021
® Unvaccinated 1111
3 ® Fully vaccinated, no booster 1.72
® Fully vaccinated, with booster 031
&
4
2

Unwvaccinated
Fully waccinated, no boaster
Fully vaccinated, with booster

Sl

Jan 31, 2021 Sep 12,2021 Mar 31, 2022 Mov &, 2022

Source: Federal Office of Public Health OurWorldinData.org/coronavirus = CC BY
Mote: Data coverage includes both Switzerland and Liechtenstein. Unwvaccinated people have not received amy dose. Partially-vaccinated

people are excluded. Fully-vaccinated people have received all doses prescribed by the initial vaccination protocol. The mortality rate for the

‘8l ages' group is age-standardized to account for the different vaccination rates of older and vounger people.

CHART TABLE SOURCES & DOWNLOAD -

12
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Data

Chile: COVID-19 weekly dealh rale by vaccinalion slalus, All ages Our World
Death rates are calculated as the number of deaths in each group, divided by the total number of people in this
group. This is given per 100,000 people.

LOG = Change age group

in Data

10
Feb 27,2022

® Oorldose 11.75
® 2 doses 11.04
® 3Jdoses 3.32
® 4doses 0.83

2 doses

1._-\\ Jdoses
M0 or 1dose

4 doses

0w . T ]
Oct 10, 2021 Mar 31, 2022 Jul 9, 2022 Dec 18,2022

Source: Department of Epidemiclogy, Ministry of Health, via Ministry of Science GitHub repository  QurWorldinD ata.org/coronavirus = CC BY
Mote: The mortality rate for the "all ages' group is age-standardized to account for the different vaccination rates of older and younger people.

CHART TABLE SOURCES & DOWNLOAD =

13
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Density
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LR %M  Global annual CO2 emissions by world region, 1850-2019

60

Global emissions
s : : : ; in 2019: 50 billion
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Interpretation: The graph shows annual global emissions by world regions. After 1990, emissions include carbon and other greenhouse
gases embedded in imports/exports of goods and services from/to other regions. Sources and series: wir?(022 wid.world/methodology

and Chancel (202 1). Historical data from the PRIMAP-hist dataset. Post-1990 data from Global Carbon Budget.

https://wir2022.wid.world/chapter-6/
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Start practising data analysis

The world’s energy problem

The world faces two energy problems:

most of our energy still produces greenhouse gas emissions,
hundreds of millions lack access to energy.

https://ourworldindata.org/enerqgy

https://github.com/owid/energy-data?tab=readme-ov-file

19
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Energy Uuse per person, 2022
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https://ourworldindata.org/energy
https://github.com/owid/energy-data?tab=readme-ov-file
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Probability serves as the foundational
framework for statistical analysis,
providing the theoretical basis for
understanding uncertainty and
randomness in data.

Statistics utilizes probability
theory to make inferences, draw
conclusions, and quantify the
likelihood of different outcomes
within a given dataset.

21
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 Def.1 Aset Q that consists of all possible outcomes of an experiment is called a sample space,
then each outcome is called a sample point. Often, we can define more than one sample space.

* Ex.1Imagine we toss a die once — a sample space of all possible results we can get is given by
0={12..,5, 6}

e Ex. 2 Let’s toss a coin twice. We can use the following: 0 == tails and 1== heads. The sample
space can be then represented on a graph like this:

] .
(0, 1) (1, 1)

.
ICOIOD

. The above corresponds to a space: Q = {HH,HT,TH, TT}

Statistics - Computer Science AGH University of Krakow

22
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* Def. 2 If a sample space has a finite number of points, it is called a finite sample space.

* Def. 3 If a sample space has as many points as there are natural numbers (1, 2, 3, ..., N, ...), itis
called a countably infinite space.

* Def. 4 If a sample space has as many points as there are in an any interval on the x-axis (a <
x < b), itis called a non-countably infinite space.

* Def. 5 A sample space that is finite or countably infinite is called a discrete sample space.

* Def. 6 A sample space that is non-countably infinite is called a continuous sample space.

Statistics - Computer Science AGH University of Krakow 23
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Events (I)

Def. 7 An event is a subset A of the sample space (), i.e., it is a set of possible outcomes
that we are interested in.

Def. 8 If the outcome of an experiment is an element of A we say that the event A has
occurred. An event consisting of a single point, belonging to sample space, is called an
elementary event.

Ex. 3 We can use the sample space from ex. 2 to define an event A: ,only one head
comes up’.

‘0.

(0, 0) @

Statistics - Computer Science AGH University of Krakow
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* Def. 9 We call the sample space the certain event, since an element that belongs to {1 must occur in our
experiment.

* Def. 10 By analogy, an empty set @, is called the impossible event.
So, using set operations on events we can obtains other events!
o The union, A U B, of A and B means ,,either A or B or both”
o The intersection, A N B, of A and B means , both A and B”
o The complement, A’, means ,not A”

Event A — B = A N B, means , A but not B”. We have in particular, A’ = Q — A

* Def. 11 If the sets corresponding to events A and B are disjoint, A N B = @, we say that the events are
mutually exclusive. They cannot both occur at the same time

* Def. 12 We say that a collection of events A, A,, ..., A, is mutually exclusive if and only if every pair in
the collection is mut. excl.

Statistics - Computer Science AGH University of Krakow 25



agh.edu.pl

I

D

RESEARCH
UNIVERSITY

7] A
<&@ o4 | [
s = 7 A
E Pt WY EERIN A
e a5l K
Ny Kz
A} v NN " |\
= LN )
SO :

Events (I

Ex. 4 Using further ex. 2, let’s use the set operations on the following events: ,,at least
one head occurs” and ,the second toss result is a tail”. Determine the outcome of all
the operations listed on the previous slide.

Statistics - Computer Science AGH University of Krakow
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Probability (1)

The main premise here is that we can assign to events numbers that can measure the
probability

Def. 13 If an event can occur in n different ways out of a total number of N possible ways,
all of which are equally likely, then the probability of the event equals ton/N

Ex. 5 In the case of a fair coin toss we have two equally likely events, so it seems reasonable
to assign them probability p(H) = p(T) = 1/2. If in an experiment we measure a bias in

the number of heads or tails we will call the coin loaded

Def. 14 If after N repetitions of an experiment, where N should be large, a particular event
is observed to occur n times, then the probability of the eventis n/N

Statistics - Computer Science AGH University of Krakow
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* There are some serious troubles with both definitions given in the previous slide...
How can we tell if events are equally likely?

What does it mean that a sample should be large?

* These issues are ,,cured” by the axiomatic approach to the probability. The core element
in the axiomatic definition is a notion of a probability function p(A), which gives a
number related with each event.

O Axiom 1 For every event: p(A) = 0

 Axiom 2 For the certain event p(Q2) = 1

U Axiom 3 For any number of mutually exclusive events A, A,, ...
= UAp) =p(A) +p(Ay) + -+ p(Ay)

,An p(Al U Azu

Statistics - Computer Science AGH University of Krakow
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Theorem 1

IfA; € A; = p(A1) < p(Az)
Theorem 2

ForeveryeventA - 0 <p(A) <1
Theorem 3

The impossible event has probability zero p(@) = 0
Theorem 4

If A" is the complement of A, then p(A") =1 — p(A)
Theorem 5

If A; and A, are any two events, then

p(A; UAy) =p(A1) + p(Ay) —p(A; NAY)
Theorem 6

For any events A; and A, p(A;) = p(A; NA,) + p(A; NA"))

Statistics - Computer Science AGH University of Krakow

29



agh.edu.pl

e oo I
A Yy LT3 SLVANN
V2 |
) o 4
B Kz |
— LN ]
A

Wi T Examp les

* Ex. 5 Lottery

A container holds 49 balls, each with a number 1 through 49. During the drawing six of them

are taken out without replacement. What is the probability that a player has chosen exactly the
same numbers?

Say, p(1) is the probability to chose the first number and is equal: p(1) = 419, then the

probability to chose by the player the second numberis p(2) = 4—18... and so on. At the end we

have:
1 43!

p(L,...6) = o e a7 46 45 44— 9]

Now, the order is not important!

61431 1 1
pwin) =g, () @
6

Where, C2? is the number of combinations of 6 elements out of 49.

Statistics - Computer Science AGH University of Krakow
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Ex. 5 ,Three gates game”

In a TV game a contestant have three identical gates to choose from.
Behind one of them there is a luxury car and other two sport goats.
First, the player is asked to pick one gate. Say, he chooses gate 1.

The host of the show opens one door which we call 2 and reveal a goat.

Now, the competitor is given a Chance to either stay with his original pick or to choose the
remaining gate (we call it gate 3).

What she/he should do?

Can the probability of winning be modified by changing the initial choice?

Statistics - Computer Science AGH University of Krakow
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* Conditional probability, i.e., probability is not absolute (subjective point of view may have a
significant impact on a value you assign to an event!)

* Def.l Let A and B be two events and assume that p(A) > 0. We denote by p(B|A) the
probability of event B given that event A. Since we know that A has occurred it becomes the
new sample space instead of the original one Q. Thus, we define the conditional probability as:

p(ANB) =p(B|A)p(A)

* By requiring the occurrence of event A we make the event space to collapse — original

probabilities are redefined — we could say that values of probability that we assign depend on
our knowledge!

Statistics - Computer Science AGH University of Krakow
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O Ex. 1 We have a fair die which is tossed once. Calculate the probability that a single toss of a die will
result in a number less than 4. Repeat the math if it is given that the toss resulted in an odd number.

* If no additional information is available we estimate the probability of turning 4 as a union of
fundamental events 1, 2, 3:

p(B) =p(1) +p(2) +p(3) =1/2

* Now, we know that an event ,,an odd number turned” has occurred, we have:

3 1

P(A)=g=§
2 1 1/3 2
P(AHB)=6=§—>P(B|A)=E=§

* In this case we ,,added knowledge” to our calculations! We knew-that an odd number turned.

* So, the values of probabilities we are going to assign to events depends on the extent of our
knowledge about this event. In time it can change!

Statistics - Computer Science AGH University of Krakow
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Some teorems on CP

Theorem.1 Let say we have three events A;, A,, A;. The probability that they all occur
can be calculated as follow (can easily be generalised to any number of events):

p(A; NA; NA3z) = p(A)p(Az|A))p(Az[A; NA,)

Theorem.2 Imagine that we have an event A that can be represented by n mutually
exclusive events E; (Q =[E; UE, U ... UE,), then

i/n
p(A) = Zi/op(A\ NE;) = p(Ep(A|E)) + -+ p(Ep)p(A|Ey)

Statistics - Computer Science AGH University of Krakow
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* It is kind of easy to notice, that if there is no influence of event A on event B (so it does
not matter if the former event occur or not), then

p(B|A) = p(B)

* In other words we say that A and B are independent events

p(ANB) =p(BIA)p(A) = p(B)p(A)

* This definition can easily be extended to any number of events. Say, we have three events
A4, A,, A; and they are pair-wise independent

p(A; NA, NA3) =p(A)p(Az)p(A3)

* Now, putting this all together, we come to a very interesting conclusion that is called...

Statistics - Computer Science AGH University of Krakow
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Bayes’ Theorem (l)

Let’s assume that the sample space can be divided into mutually exclusive events: Q = [E4
UIE, U .. UE, (see also plot on slide 16), by this we enforce that any of [E; must occur.
Now, if A is any event from this sample space then we have the following theorem:

p(E)p(A|E;) p(E;)p(A|E;)
(Ei A\) — i =
P Zifo p(E)p(A|E;) p(A)

By means of Bayes theorem we can estimate probability of various events that can cause
A to occur. Therefore, it is also called a theorem on prob. of causes.

Likelihcod of the evidence 'E

Prior Probability it the Hypothesis ‘'H’ is true

bt < PED* PELHD
L P(E)
Posterior Probability of ‘H’ Pricri probability that the evidence
given the evidence itself is true

Statistics - Computer Science AGH University of Krakow
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Bayes” Theorem (lI)

Pictures are nice, so...

p(A) - prob. of A, we have no knowledge of B

0 O S p(A)p(BlA)

P(B)= p(A|B) =

- p(A|B) - here, we are smarter, we know B has occurred

P(A)=

P(A[B)= P(B|A)=

9
O

Statistics - Computer Science AGH University of Krakow 37
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P(A|B)P(B)= X —— = =P{ANB)

. @0 o
P(B|AIP(A)= X =P(ANEB)

* One amazing thing about Bayes approach is capability of working out probabilities of events
that cannot be even considered by frequentists (which deal with repeatable cases)

* A critical difference (that is very useful for experimentalists) between frequentist and
Bayesian methods is that the latter can give a probability that a value of unknown
parameter (something that came from theory for instance) lies within a certain interval

Note, since a parameter is just a number and cannot be considered a random variable,
this procedure would not be possible in a classical probability

Statistics - Computer Science AGH University of Krakow

38



agh.edu.pl

;i‘j y A )

LT Bayes’ Theorem (|V)

For a long time Bayes theorem was treated as not so interesting rule that is a simple consequence
of conditional probability definition. However, recently the interpretation of the rule was revisited
what sparked a new branch of statistics called Bayesian approach.

Often treated as alternative/complementary way of assigning probabilities

Let’s rewrite the theorem as follow:

p(theory|data) < p(data|theory)p(theory)

Here we use subjective probabilities, that express a degree of believe that something is true —
that is the core of the Bayesian approach

,Theory” represents a hypothesis, ,,data” represent the outcome of an experiment

p(theory) - represent a prior probability, or a degree of believe before measurement,
p(data|theory) - represent likelihood of getting the data given the theory is true

The p(theory|data), posterior, tells us, how the prior probability should be changed given the
observed data

Statistics - Computer Science AGH University of Krakow
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oY Bay@S’ Theorem Examp\e

Example: Allergy or Not?

Hunter says she is itchy. There is a test for Allergy to Cats, but this
test is not always right:

e For people that really do have the allergy, the test says "Yes"
80% of the time

e For people that do not have the allergy, the test says "Yes"
10%b of the time ("false positive")

If 1% of the population have the allergy, and Hunter's test says "Yes", what
are the chances that Hunter really has the allergy?

https://www.mathsisfun.com/data/bayes-theorem.html
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We want to know the chance of having the allergy when test says "Yes", written P(Allergy|Yes)

Let's get our formula:

P(Allergy) P(Yes|Allergy)

P(Allergy|Yes) = P(Yes)

* P(Allergy) is Probability of Allergy = 1%
s P(Yes|Allergy) is Probability of test saying "Yes" for people with allergy = 80%
* P(Yes) is Probability of test saying "Yes" (to anyone) = ?7%

Oh no! We don't know what the general chance of the test saying "Yes" is ...

... but we can calculate it by adding up those with, and those without the allergy:

* 1% have the allergy, and the test says "Yes" to 80% of them

* 999% do not have the allergy and the test says "Yes" to 10% of them

Test says "Yes" Test says "No"
20% "False
Have allergy : 80% ° o
Negative
Don't have it 10% "False Positive" 90%

41



agh.edu.pl

0 - A 4\
¢ A 4’ WIS VAN
< 2 - 2| N
SR s ol
= AN, 7.
QA= A,

RESEARCH
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P(A)P(B|A)
P(A)P(B|A) + P(not A)P(B[not A)

P(AIB) =

» Ain this case is "actually has the allergy”

» B in this case is "test says Yes"

P(A|B) means "The probability that Hunter actually has the allergy given that the test says Yes"
P(B|A) means "The probability that the test says Yes given that Hunter actually has the allergy”
To be clearer, let's change A to has (actually has allergy) and B to Yes (test says yes):

P(has)P(Yes|has)
P(has)P(Yes|has) + P(not has)P(Yes|not has)

P(has|Yes) =

And put in the numbers:

0,01x0,8
P(has|yes) = 0,01x0,8 + 0,99%0,1
= 0,0748...

Which is about 7%
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Bayes’ Theorem Example

O Particle (in principle we can put here whatever) identification and the purity

There is a device called ,muon detector” (and a muon is a particle almost identical to electron). This muon
detector gives predictions regarding the type of particle that traverses it, for instance when there is a muon we
get positive signal with efficiency e(u —» u) = p(+|u) and false positive if there is another particle called pion
with probability e(mr — u) = p(+|m). Let’s assume our experiment has been running for some time and
registered N particles. What is the probability that a randomly selected particle is indeed a muon?

First we need to define the prior probabilities: p(u) and p(r) = 1 — p(u). With the Bayes equation:

p(+wp () _ p(+wp ()
p(+) p(+|wp ) + p(+|m)p ()

The purity fjel is simply the ratio between the number of muons in a selected sample (ideally all muons!) to
the number of all particles in the sample.

p(ul+) =

e(u = Wiy
c(u-wfy,+elm- Wiy
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