

CP-Violation in Heavy Flavour Physics <u>CKM Matrix</u>

Agnieszka Obłąkowska-Mucha, Tomasz Szumlak

AGH-UST Krakow

A brief intro: currents, amplitudes, ...

- ☐ Will need that to place the CKM matrix elements, so...
- ☐ Creating a coherent mathematical framework for the weak int. (WI) is not easy
 - Need to incorporate neutrinos, leptons and quarks (hadrons)
 - ☐ Also, need to convey what is left and right
- ☐ This is done by introducing interacting "currents", which specify the flow of particles
 - \Box For instance, we say, using this formalism that β decay can be seen as one current converting a neutron into proton and the other creating an electron and the appropriate neutrino
- ☐ The tricky part is to come up whit a general form of such currents...

A brief intro: currents, amplitudes, ...

- ☐ Firstly we need to write the currents such all of the experimental facts (read conservation rules) are observed let's focus on leptonic processes first
- ☐ For instance we observe that whenever an electron-neutrino is absorbed an electron is created or whenever an electron-neutrino is created a positron must be created as well
- ☐ So, our lepton wave functions must always come in **pairs**
- □ Also, we need to add some dynamic factor, that takes into account parity, charge-parity and CP-violation accordingly

$$\bar{J}^{W} = \bar{\psi}_{\nu_{l}} \Lambda \psi_{l}, \qquad l = \{e, \mu\}$$

A brief intro: currents, amplitudes, ...

□ Now comes the sweet part – all first order amplitudes observed in nature can be generated by simple **product** of these **currents**!

■ Now, these are space time diagrams, so, we could use the same one to describe scattering and decay

☐ It seemed there is something awkward with the WI (what's new...)

- ☐ In order to describe correctly the observed processes we need two different "coupling constants"
 - ☐ Shame..., would be nice to have leptonic and hadronic currents share the same coupling weak universality

- ☐ This is bad! Quark currents are not universal w.r.t. the WI either...?
- ☐ Shall we introduce a number of coupling constants? Not very nice...

- □ Cabbibo found much more elegant way, which brought back simplicity to the WI
 - weak e-states (flavour) are different than the mass ones
 - ☐ we already seen the same effect for kaons!
 - □ some of quarks are **mixed** (have not specified flavour) this way we can show that there is just one universal coupling for leptons and quarks! Awesome!

☐ In Cabbibo theory both **d** and **s** quarks are mixed, so we can come up with the following mixing matrix

■ Mixing (Cabbibo) angle is a parameter of, so called, flavour sector of the SM – cannot be predicted only measured!

$$\frac{\Gamma(K^{+} \to \mu \nu_{\mu})}{\Gamma(\pi^{+} \to \mu \nu_{\mu})} \sim tan^{2}(\theta_{c})$$

$$\frac{\left| \int_{W^{-}}^{W^{-}} \left(\frac{1}{2} \right) \right|^{2}}{\left| \int_{W^{-}}^{W^{-}} \left(\frac{1}{2} \right) \right|^{2}} = tan^{2}\theta_{c}$$

$$\theta_c \approx 13.1^o$$

☐ Hm, let's have a look at quark families..., they look strange

$$\binom{u}{d'} = \binom{u}{d \cdot \cos(\theta_c) + s \cdot \sin(\theta_c)}, \qquad \binom{?}{s'} = \binom{?}{-d \cdot \sin(\theta_c) + s \cdot \cos(\theta_c)}$$

- What is wrong with this picture? Is there something missing maybe...?
- ☐ Some clues were offered by a missing decay...

☐ This is a legitimate decay channel of neutral kaon, the observed decay rate much much smaller than the predicted

□ Can we account for this and fix the quark family structure? Yes! Just need some charm (GIM mechanism) –fourth quark c coupled to s'

☐ So, we have the same final state, so, to calculate observable we need to add amplitudes

$$\left|A^{K\to\mu\mu}\right|^2 = \left|A_u^{K\to\mu\mu} + A_c^{K\to\mu\mu}\right|^2 \approx 0$$

☐ It is almost canceled out – the non zero value is due to mass difference (BEH mechanism enters the scenes!)

- ☐ The small decay rate of kaons to muons prompted an idea of adding another quark charm
- ☐ This was summed up in Glashow-Weinberg-Salam model (GIM)
 - □ GWS is of course much more than that intermediate bosons, weak isospin structure of quark and lepton families, symmetry breaking (BEH mechanism)

☐ Flavour changing charged current weak interactions – can couple different quark generations!

- ☐ Very nice! But there is no room for CP violation here
- □ Cabbibo mixing matrix is described by a single parameter that is real number!
- ☐ Any idea how to make a progress?
- ☐ Yes! More quarks!

Mix it up!

- □ In order to accommodate CP-violation effects in the SM K & M came up with the idea of third generation of quarks
- ☐ In this picture up-type quarks decay into mixed (weak e-state) down-type ones
- □ Remember this is just a convention, we could build a theory with mixed up-type quarks with the same observables!

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
Weak e-states Mixing matrix

Weak e-states Mixing matrix
Cabbibo-Cobayashi-Maskawa

Mass e-states

- \square Elements, V_{ij} of the CKM matrix are **complex numbers**
- ☐ The CKM matrix is **unitary** (probability conservation)
- lacktriangle The elements V_{ij} cannot be predicted constants of the flavour sector

Mix it up!

☐ So, in general we have the following transitions

- lacktriangle Depending on the direction of transition we will have either V_{ij} or its conjugate partner V_{ud}^*
- Would be nice to write down the quark current explicitely to see how the CKM matrix fit in

■ Now quark currents can be written out as

We did sth similar when introduced Cabbibo matrix!

$$j_{d'u}^{w} = \bar{u} \left[-i \frac{g_{w}}{\sqrt{2}} \gamma^{\mu} \frac{1}{2} (1 - \gamma^{5}) \right] d' \rightarrow j_{d'u}^{w} = \bar{u} \left[-i \frac{g_{w}}{\sqrt{2}} \gamma^{\mu} \frac{1}{2} (1 - \gamma^{5}) \right] V_{ud} d$$

$$j_{ud'}^w = \overline{d'} \left[-i \frac{g_w}{\sqrt{2}} \gamma^\mu \frac{1}{2} (1 - \gamma^5) \right] u \rightarrow j_{ud'}^w = \overline{d} \underline{V_{ud}^*} \left[-i \frac{g_w}{\sqrt{2}} \gamma^\mu \frac{1}{2} (1 - \gamma^5) \right] u$$

$$\overline{d'} = (d')^{\dagger} \gamma^0 = (V_{ud} d)^{\dagger} \gamma^0 = V_{ud}^* d^{\dagger} \gamma^0 = V_{ud}^* \overline{d}$$

$$\Lambda' = \mathbf{V_{ud}^*} \left[-i \frac{g_w}{\sqrt{2}} \gamma^\mu \frac{1}{2} (1 - \gamma^5) \right]$$

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{pmatrix} \approx \begin{pmatrix} 0.974 & 0.226 & 0.004 \\ 0.23 & 0.96 & 0.04 \\ ? & ? & ? \end{pmatrix}$$

- ☐ Elements of the CKM mixing matrix are parameters of the quark flavour sector of the SM
- Need to be measured
- ☐ The last row filled with the question marks hard to measure
- ☐ With unitarity assumption one can get

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{pmatrix} \approx \begin{pmatrix} 0.974 & 0.226 & 0.004 \\ 0.23 & 0.96 & 0.04 \\ 0.01 & 0.04 & 0.999 \end{pmatrix}$$

- ☐ The only way to **change flavour** via charged currents in the SM
- ☐ Can introduce **change** of quark **generation** and **CP violation**!

☐ The "standard" representation – rotation in a complex space

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \qquad c_{ij} \equiv \sin\theta_{ij}$$

- \square NOTE! $U_{ij} = |V_{ij}|^2$ is independent of quark **re-phasing**
- \square Next simplest: Quartets: $Q_{aibj} = V_{ai}V_{bj}V_{aj}^*V_{bi}^*$ with $a \neq b$ and $i \neq j$
 - "Each quark phase appears with and without *"
- \square $V^{\dagger}V=1$: Unitarity triangle: V_{ud} V_{cd}^* + $V_{us}V_{cs}^*$ + V_{ub} V_{cb}^* = 0
- ☐ Jarlskog invariant (measure of CP violation):

$$J = Im (Q_{udcs}) = -Im (Q_{ubcs})$$

- ☐ The imaginary part of each Quartet combination is the same (up to a sign)
 - \square In fact it is equal to 2x the surface of the unitarity triangle

Unitarity triangle

☐ Using unitarity of the CKM matrix one can write (for instance)

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

$$\alpha = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right) = \arg\left(-Q_{ubtd}\right)$$

$$\beta = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) = \arg\left(-Q_{tbcd}\right)$$

$$\gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{v}V_{v}^*}\right) = \arg\left(-Q_{cbud}\right)$$

Unitarity angles are invariant w.r.t. quark fields re-phasing!

Unitarity triangle

☐ The most popular representation of the CKM matrix came from Wolfenstein – off-diagonal elements are small w.r.t. the diagonal ones

$$V = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

☐ Using this representation we can also re-define unitary triangles, of course the angles are the same!

