

Physics at LHCb 2

- I. The LHCb experiment
- II. Heavy flavour physics
- III. Measurements @ LHCb
- IV. Plans for Upgrade 1 and 2
- V. How to do precise measurements:
 - mass and momentum resolution
 - proper time-life

Agnieszka Obłąkowska-Mucha AGH UST Kraków

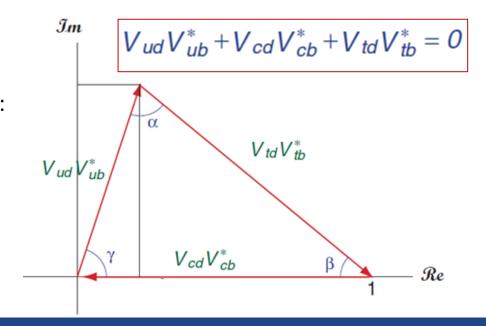
Heavy flavour physics - parameters

- We have two aims: either confirm Standard Model or/and find evidences of Physics Beyond the SM
- Decay rates are used for absolute BR measurements and observation of CPV in decays
- CKM matrix elements are obtained with: decay rates measurement angles....

 V_{CKM} elements are complex numbers (absolute value and phase) proportional to the transition amplitude between quarks

CKM matrix must be unitary, so we have conditions on its parameters:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$


 $V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$ (+ 4 more)

and can be represented as triangles:

$$V_{ud}^* V_{td} + V_{us}^* V_{ts} + V_{ub}^* V_{tb} = 0$$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$V_{CKM} = \begin{pmatrix} 1 & \lambda & \lambda^3 e^{-\gamma} \\ -\lambda - \lambda^5 e^{-\phi} & 1 & \lambda^2 \\ \lambda^3 e^{-i\beta} & -\lambda e^{-i\beta_s} & 1 \end{pmatrix}$$

arbitrary units

CP violation in mixing

 \bar{B}_q^0

 $ar{B}_q^0$

b

u, c, t

q

b

W

·/////////

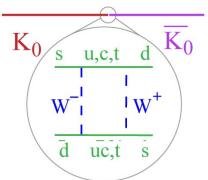
W

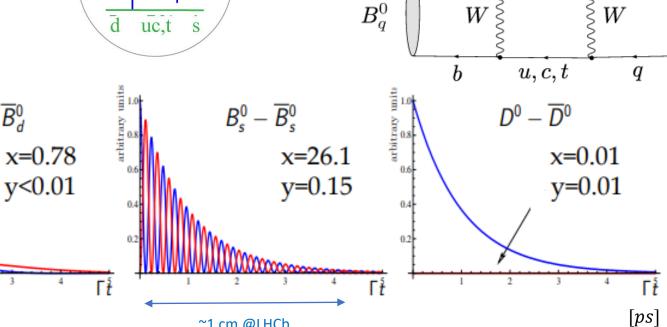
u, c, t

q

u, c, t

Weak interactions makes possible the change of quark flavour. This rule can do some magic transition from matter to antimatter:


 $B_d^0 - \overline{B}_d^0$


- We found that having started the observation with a P^0 meson, after some time t we can have $\overline{P^0}$ (P^0 has oscillated to P^0)!
- SM and V_{CKM} provide us with the parameters of oscillations

x = -0.95

y = 0.99

 $K^0 - \overline{K}^0$

 B_q^0

~1 cm @LHCb

Time evolution of neutral mesons*

1. The eigenstates of effective Hamiltonian (weak) written in the form:

$$|P_1\rangle=p|P^0\rangle+q|\overline{P^0}\rangle$$

$$|P_2\rangle=p|P^0\rangle-q|\overline{P^0}\rangle$$

$$p \text{ and } q \text{ are complex numbers satisfying: } |p|^2+|q|^2=1 \text{ (for } K_1^0 \text{ and } K_2^0: \ p=q=\frac{1}{\sqrt{2}}\text{)}$$

2. Solving Schrödinger equation we see time evolution of the eigenstates:

$$|P_1(t)\rangle = |P_1\rangle e^{-i\left(m_1 - \frac{i\Gamma_1}{2}\right)t}$$

$$|P_2(t)\rangle = |P_2\rangle e^{-i\left(m_2 - \frac{i\Gamma_2}{2}\right)t}$$

These relations show that the original P^0 meson after some time can either convert to $\overline{P^0}$ or decay.

Time evolution of neutral mesons*

9. Finally the time evolution of weak eigenstates as a combination of flavour eigenstates:

$$ig|m{P^0(t)}ig
angle = f_+(t)ig|m{P^0}ig
angle + rac{q}{p}f_-(t)ig|ar{P^0}ig
angle \ ig|ar{P^0}(t)ig
angle = f_+(t)ig|ar{P^0}ig
angle + rac{p}{q}f_-(t)ig|ar{P^0}ig
angle$$

$$f_{\pm}(t) = \frac{1}{2} \left[e^{-i(m_1 - \frac{i}{2}\Gamma_1)t} \pm e^{-i(m_2 - \frac{i}{2}\Gamma_2)t} \right]$$

$$\left| \mathbf{f}_{\pm}(\mathbf{t}) \right|^{2} = \frac{1}{4} \left[e^{-i\Gamma_{1}t} + e^{-i\Gamma_{2}t} \pm 2e^{-\overline{\Gamma}t} \mathbf{cos}(\Delta mt) \right]$$

$$\bar{\Gamma} = \frac{\Gamma_1 + \Gamma_2}{2}$$

10. The time evolution of mixing probabilities, i.e. the probability that having started the observation with a P^0 meson, after some time t we still have P^0 (or it has oscillated to $\overline{P^0}$):

interference term

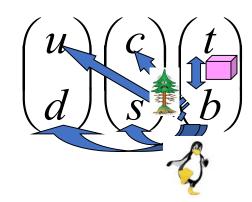
$$P(P^0 \to P^0; \mathbf{t}) = |\langle P^0 | P^0(t) \rangle|^2 = |f_+(t)|^2$$

$$P(P^0 \to \overline{P^0}; \mathbf{t}) = |\langle \overline{P^0} | P^0(t) \rangle|^2 = \left| \frac{q}{p} f_-(t) \right|^2$$

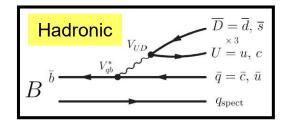
Let's look closer at the parameters of flavour oscillations:

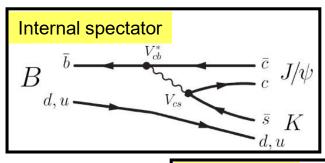
III. Measurements @ LHCb

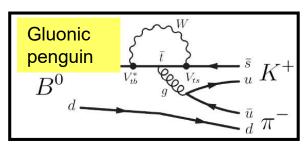
Heavy flavour physics

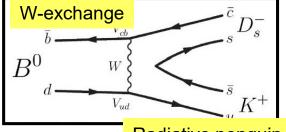


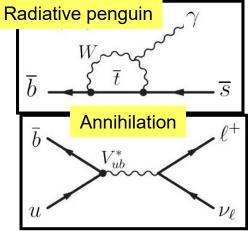

boxes

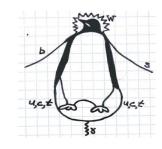


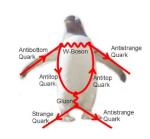

pinguins

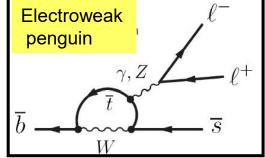


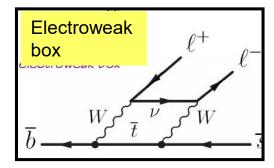




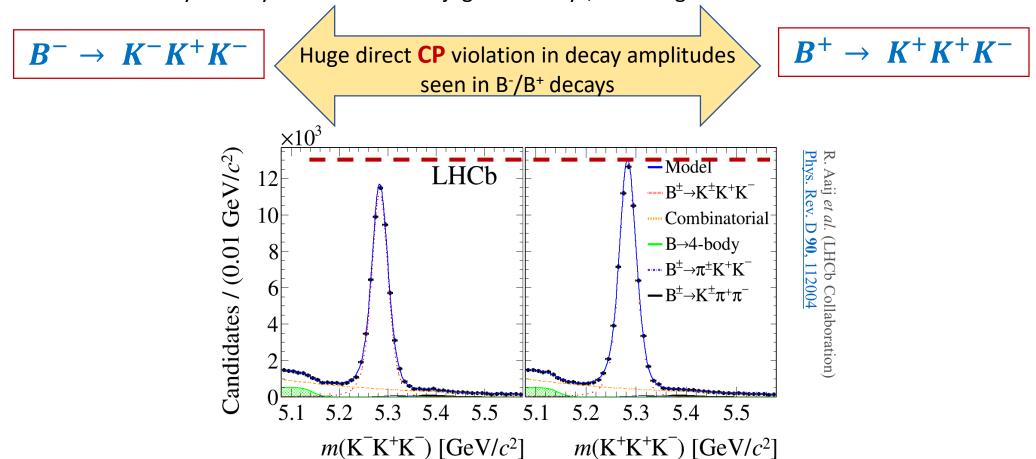






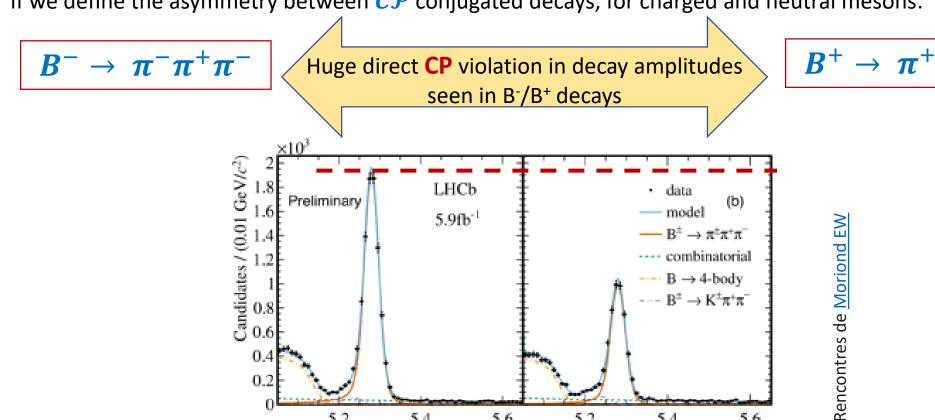


John Ellis 1977 lost darts bet



CP Violation (in decay)

- 1. One of the simplest way to discover \mathcal{CPV} is to compare the decay rates arGamma(P o f) with $arGamma(ar{P}) o ar{f}$
- 2. If we define the asymmetry between \mathcal{CP} conjugated decays, for charged and neutral mesons:



CP Violation (in decay)

- One of the simplest way to discover \mathcal{CPV} is to compare the decay rates $\Gamma(P \to f)$ with $\Gamma(\overline{P}) \to \overline{f}$
- If we define the asymmetry between \mathcal{CP} conjugated decays, for charged and neutral mesons:

5.2

5.4

 $m(\pi^{-}\pi^{+}\pi^{-})$ [GeV/c²]

5.2

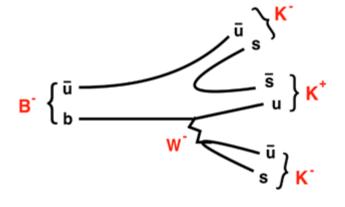
5.4

 $m(\pi^{+}\pi^{+}\pi^{-})$ [GeV/ c^{2}]

5.6

5.6

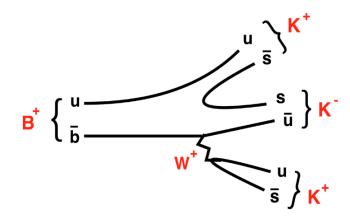
CP Violation (in decay)



- 1. One of the simplest way to discover \mathcal{CPV} is to compare the decay rates arGamma(P o f) with $arGamma(ar{P}) o ar{f}$
- 2. If we define the asymmetry between \mathcal{CP} conjugated decays, for charged and neutral mesons:

$$B^- \rightarrow K^-K^+K^-$$

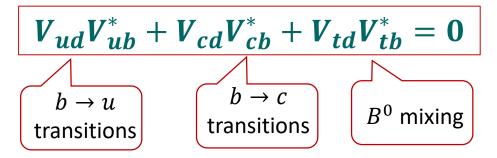
Huge direct **CP** violation in decay amplitudes seen in B⁻/B⁺ decays


$$B^+ \rightarrow K^+K^+K^-$$

Can you find the quark transitions (change of flavour)?

$$V_{ub}$$
 and V_{us}

This shows the connection between "simple" counting of decays and the Standard Model



Sides of the Unitary Triangles

Sides of the UT can be measured with:

V_{ud}	eta-decay	Nuclear physics	$\cos \vartheta_i$
V_{us}	K decay	$K^{+0}\to\pi^{0+}l^+\nu_l$	$\sin \vartheta_i$
V_{cd}	Neutrino scatering	$ u_{\mu}d ightarrow\mu^{+}c$	$\cos artheta_i$
V_{cs}	Charm decay	$D_S^+ o \mu^+ \nu_\mu$	BR
V_{ub}	B decay	$B^0 o \pi^- e^+ \nu_e$	BR
V_{cb}	B decay to charm		
V_{td}	B mixing		

Angles of the Unitary Triangles

Angles of the UT can be measured with:

$B^0 \to J/\psi K_S$	$\sin 2\beta$	
$B^0 \to \pi^+\pi^-$	$\sin 2\alpha$	
$B_S^0 \to D_S^+ K^-$	$\sin 2\gamma$	
Weak phase	$\boldsymbol{\beta}_{S}$	

Short history of flavour physics:

- 1. First B physics experiments were build on symmetric electron-positron collider:
 - Petra (DESY) in 80'ties
 - LEP at CERN in 1994-2000
- 2. Then two asymmetric B-factories (currently not taking data):
 - Belle (Japan)
 - BaBar (SLAC,USA)
- 3. LHC
 - LHCb dedicated B physics experiment
 - CMS, ATLAS also interested in heavy flavours

1. Like neutral kaon system, neutral B mesons may also oscillate:

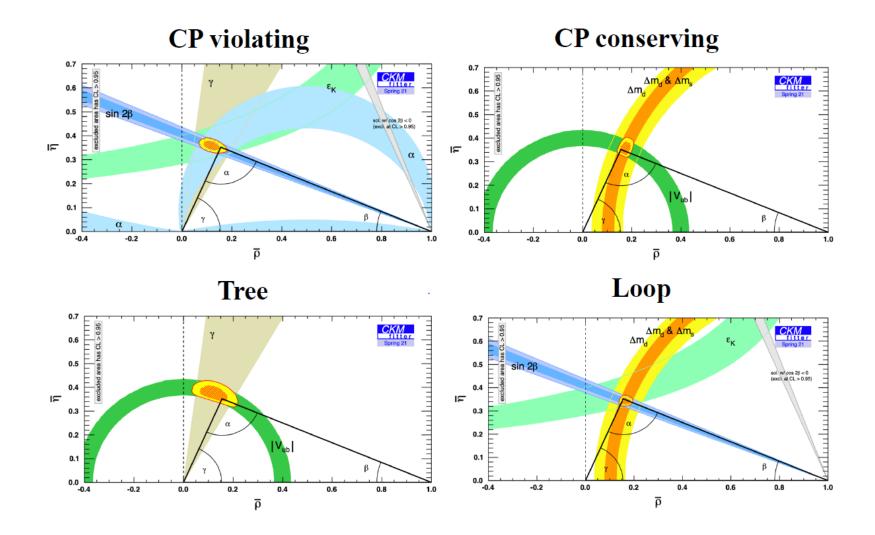
$$\begin{pmatrix} B^0 = d\bar{b} \\ \overline{B^0} = \bar{d}b \end{pmatrix}$$

2. The top quark transition has the dominant amplitude:

$$A \propto \sum all \ pair \ of \ quarks \ A_{bi} A_{jb}^*$$

$$\left(\frac{B_S^0 = s\bar{b}}{B_S^0 = \bar{d}s}\right)$$

b	u,c,t	d, s
W- 6	\leq \leq w	+
	3 3	
d,\overline{s}	$\overline{u},\overline{c},\overline{t}$	\overline{b}


	$B^0 = d\overline{b} \ \overline{B^0} = \overline{d}b$	$B_S^0 = s\overline{b} \ \overline{B_S^0} = \overline{d}s$
Oscillations parameter	$x_d = \frac{\Delta m_d}{\overline{\Gamma_d}} \approx 0.72$	$x_{\scriptscriptstyle S} = \frac{\Delta m_{\scriptscriptstyle S}}{\overline{\Gamma_{\scriptscriptstyle S}}} \approx 24$
Large mass difference	$\Delta m_d \approx 3.3 \cdot 10^{-13} \; GeV$ $\approx 0.5 \; ps^{-1}$	$\Delta m_{\scriptscriptstyle S} \approx 17.8~ps^{-1}$
Small lifetime difference	$x_d = \frac{\Delta \Gamma_d}{\overline{\Gamma_d}} \approx 5 \cdot 10^{-3}$	$x_d = \frac{\Delta \Gamma_S}{\overline{\Gamma_S}} \approx 0.1$
$\frac{q}{p}$ - sensitivity to weak phase	$\frac{q}{p} = \frac{V_{td}V_{tb}^*}{V_{tb}V_{td}^*} \sim \beta$	$\frac{q}{p} = \frac{V_{ts}V_{tb}^*}{V_{tb}V_{ts}^*} \sim \beta_s$

$$\frac{q}{p} = \sqrt{\frac{M_{12}^*}{M_{12}}}$$

Overconstraining CKM matrix

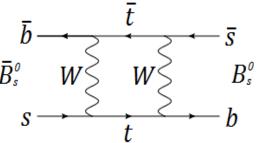
1. The weak B-meson states are a combination of flavour states:

$$|B_L\rangle = p|B^0\rangle + q|\overline{B^0}\rangle$$
 $|B_H\rangle = p|B^0\rangle - q|\overline{B^0}\rangle$

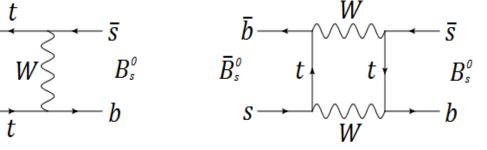
2. In terms of the CKM elements q/p is given by:

$$\frac{q}{p} = \frac{V_{td}V_{tb}^*}{V_{th}V_{td}^*} = e^{-i2\beta}$$

here d is replaced by s in case of B_s^0


$$= e^{-i2\beta}$$

$$\bar{b} \longrightarrow \bar{s}$$


so now the physical states are written as:

$$|B_L\rangle = 1/\sqrt{2} \left[|B^0\rangle + e^{-i2\beta} |\overline{B^0}\rangle \right]$$

$$|B_H\rangle = 1/\sqrt{2} \left[|B^0\rangle - e^{-i2\beta} |\overline{B^0}\rangle \right]$$

$$\frac{q}{p} = \frac{V_{ts}V_{tb}^*}{V_{tb}V_{ts}^*} = e^{-i2\beta s}$$

the eigenstates of the effective Hamiltonian, with definite mass and lifetime, are mixtures of the flavour eigenstates and β is also called the B^0 mixing phase

- 3. The states B_L and B_H are lighter and heavier state, with almost identical lifetimes: $\Gamma_L = \Gamma_H \equiv \Gamma$
- 4. The mass difference Δm between them is greater then in kaons.

5. If we write the flavour states as a combination of weak states:

$$|B^0\rangle = 1/\sqrt{2} \left[|B_L\rangle + |B_H\rangle \right]$$

then the wavefunction evolves according to the time dependence of physical states:

$$|B(t)\rangle = 1/\sqrt{2}\{a(t)|B_L\rangle + b(t)|B_H\rangle\}$$

where time dependence of coefficients is:

$$a(t) = e^{-i(m_L - \frac{i}{2}\Gamma)t}$$
 $b(t) = e^{-i(m_H - \frac{i}{2}\Gamma)t}$

Now substitute a(t) and b(t) and $|B_{L,H}\rangle$ into time-dependent wave function.

Do not forget to express mass states as a combination of flavour states....

$$|B_L\rangle = 1/\sqrt{2} \left[|B^0\rangle + e^{-i2\beta} |\overline{B^0}\rangle \right]$$
$$|B_H\rangle = 1/\sqrt{2} \left[|B^0\rangle - e^{-i2\beta} |\overline{B^0}\rangle \right]$$

6. Now substitute a(t) and b(t) and $|B_{L,H}\rangle$ into time-dependent wave function:

$$a(t) \text{ and } b(t) \text{ and } |B_{L,H}\rangle \text{ into time-dependent wave function:}$$

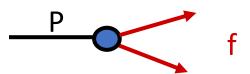
$$|B(t)\rangle = 1/\sqrt{2}\{a(t)|B_L\rangle + b(t)|B_H\rangle\} \qquad |B_L\rangle = 1/\sqrt{2}\left[|B^0\rangle + e^{-i2\beta}|\overline{B^0}\rangle\right]$$

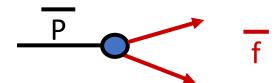
$$|B_H\rangle = 1/\sqrt{2}\left[|B^0\rangle - e^{-i2\beta}|\overline{B^0}\rangle\right]$$

$$|B_H\rangle = 1/\sqrt{2}\left[|B^0\rangle - e^{-i2\beta}|\overline{B^0}\rangle\right]$$

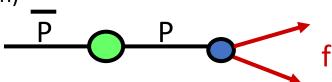
.... and calculate the probabilities of the state to stay as a $|B^0\rangle$

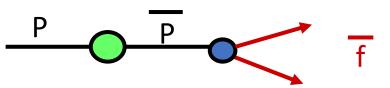
$$P(B^{0}(t=0) \to B^{0}; t) = |\langle B^{0}(t)|B^{0}\rangle|^{2} = .. = .. = e^{-\Gamma t} \cos^{2}\left(\frac{\Delta m}{2}t\right)$$

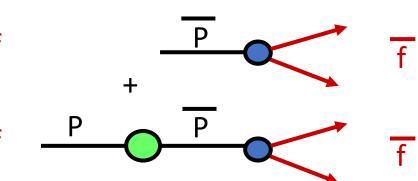

7. The same calculation can be done for B_S^0



CP violation – three ways




I. CP violation in decay (direct CP Violation)



II. CP violation in mixing (indirect CP Violation)

III. CP violation in interference between mixing and decay

CP violation – it's all about amplitudes

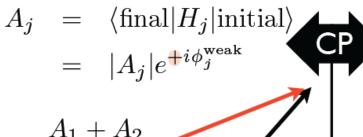
• One of the simplest way to discover CPV is to compare the decay rates $\Gamma(P o f)$ with $\Gamma(\overline{P}) o \overline{f}$

$$\Gamma(P \to f) \propto N_{cand}$$

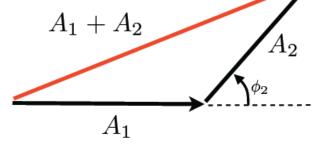
- This is a method for direct CPV in decay amplitudes, when two amplitudes with different phases interfere.
- If we define the asymmetry between \mathcal{CP} conjugated decays, for charged and neutral mesons:

$$A_{CP,dir} = \frac{\Gamma\{P \to f\} - \Gamma\{\overline{P} \to \overline{f}\}}{\Gamma\{P \to f\} + \Gamma\{\overline{P} \to \overline{f}\}}$$

where:


$$\Gamma(P \to f) \propto |A_f|^2$$

• Amplitude A_f is defined as a matrix element that describes the transition between state P and f, such that $P \to f$ depends on: $A_f = \langle f|H|P \rangle$ and $\overline{P} \to f$ on: $\overline{A_f} = \langle f|H|\overline{P} \rangle$


Essence of amplitude interference

$$ar{A}_j = A_j^*$$

$$= |A_j| e^{-i\phi_j^{\text{weak}}}$$

$$\bar{A}_{1}$$

$$\bar{A}_{1} + \bar{A}_{2}$$

$$\bar{A}_{2}$$

$$P(\bar{i} \to \bar{f}) = |\bar{A}_{1} + \bar{A}_{2}|^{2}$$

$$P(i \to f) = |A_1 + A_2|^2$$

$$= |A_1|^2 + 2|A_1||A_2|\cos\phi_2 + |A_2|^2$$

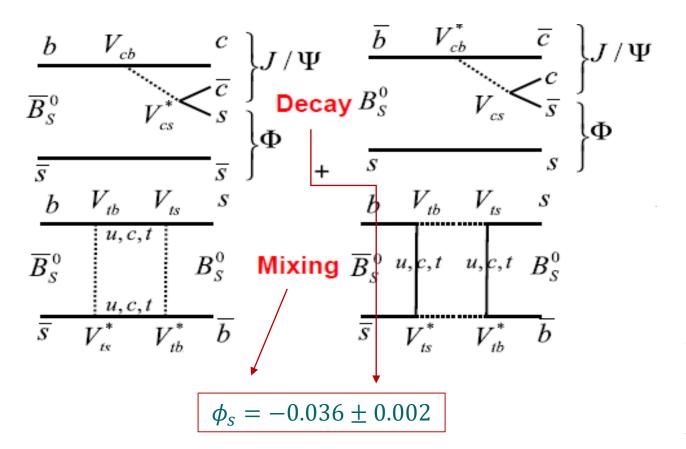
In case of only one decay amplitude – the decay rates are equal:

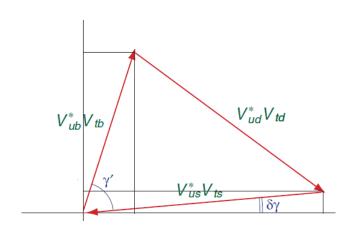
$$\Gamma(P \to f) = \Gamma(\overline{P} \to \overline{f})$$

and no CP violation occurs.

For two amplitudes the decay rates may differ and the asymmetry is sensitive to relative phase

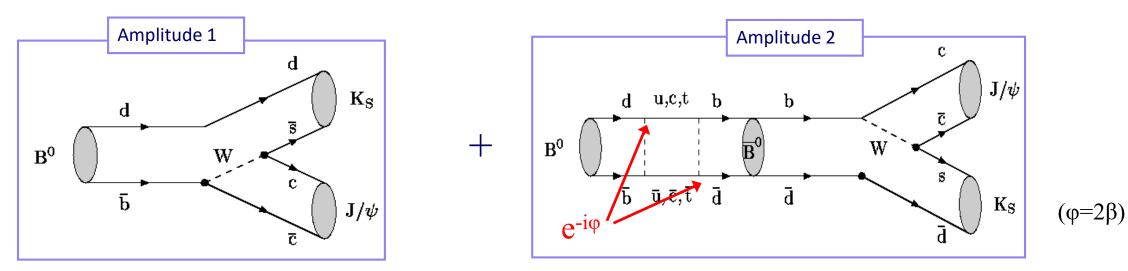
$$A = \frac{\left|\overline{A_f}\right|^2 - \left|A_f\right|^2}{\left|\overline{A_f}\right|^2 + \left|A_f\right|^2}$$


20



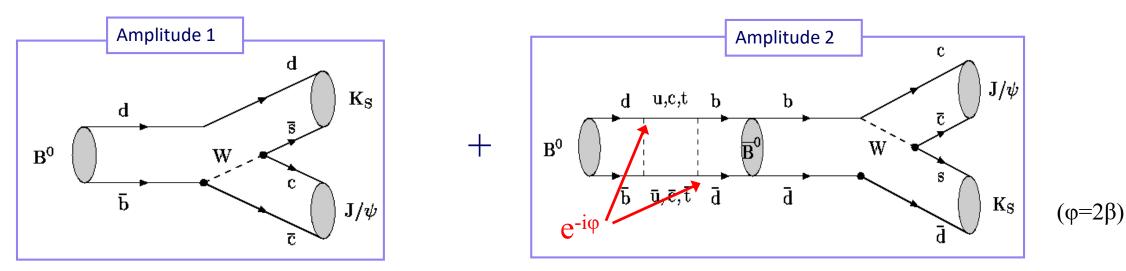
The weak phase ϕ_S

The weak phase ϕ_S can be extracted from tagged Bs decays to CP eigenstates: $B_S \to J/\psi \phi$


Very small value of ϕ_s is predicted in SM. So any deviation from zero is a sign of new particle exchanged – Physics Beyond the Standard Model

Golden channel for $\sin 2\beta$

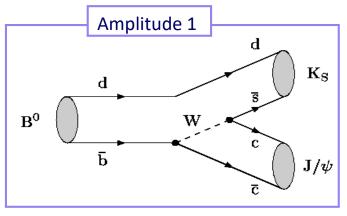
- 1. The process $B^0 o J/\psi \ K_S$ is called the "golden mode" for measurement of the eta angle:
 - a) clean theoretical description,
 - b) clean experimental signature,
 - c) large (for a B meson) branching fraction of order ~10-4.
- 2. This is a process with interference of amplitudes with and without mixing:


3. The β angle sensitivity comes from the $B^0 \leftrightarrow \overline{B^0}$ mixing due to the $\overline{t} \to \overline{d}$ and $t \to d$ transitions.

Golden channel for $\sin 2\beta$

- 1. The process $B^0 o J/\psi \ K_S$ is called the "golden mode" for measurement of the β angle:
 - a) clean theoretical description,
 - b) clean experimental signature,
 - c) large (for a B meson) branching fraction of order ~10-4.
- 2. This is a process with interference of amplitudes with and without mixing:

3. The β angle sensitivity comes from the $B^0 \leftrightarrow \overline{B^0}$ mixing due to the $\overline{t} \to \overline{d}$ and $t \to d$ transitions.


Golden channel for $\sin 2\beta$

4. We need to calculate the asymmetry of the type:

$$A_{CP}(t) = \frac{\Gamma_f - \overline{\Gamma_f}}{\Gamma_f + \overline{\Gamma_f}}$$

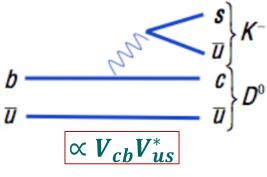
and remember that decay rate depends on (see lect 4): $\Gamma(B \to f) \propto \left| A_f \right|^2 = |A_1 + A_2|^2$

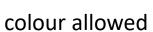
Amplitude 2 $\frac{d}{d}$ $\frac{u,c,t}{b}$ $\frac{b}{\bar{u},\bar{e},t}$ \bar{d} \bar{d} \bar{d} \bar{d} \bar{d} \bar{d}

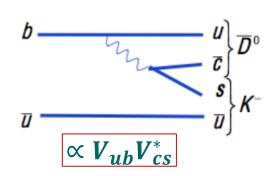
 $\phi = 2\beta$

$$\Gamma(B \to J/\psi \ K_S) = \left| Ae^{-imt - \Gamma t} \left(\cos \frac{\Delta mt}{2} + e^{-i\phi} \sin \frac{\Delta mt}{2} \right) \right|^2$$

$$A_{CP}(t) = \frac{\Gamma\{B \to J/\psi \ K_S\} - \Gamma\{\bar{B} \to J/\psi \ K_S\}}{\Gamma\{B \to J/\psi \ K_S\} + \Gamma\{\bar{B} \to J/\psi \ K_S\}} = -\sin 2\beta \sin \Delta mt$$




Time integrated methods $B_s^0 \rightarrow D_s^- K^+$: CKM γ angle



- This is a measurement of angle γ with the processes $B^{\pm} \rightarrow D^0 K^{\pm}$.
- Plenty of methods which differ by the final states:

Interference between two diagrams:

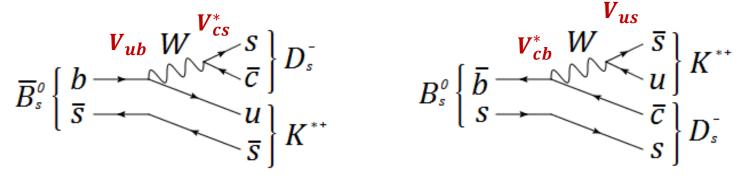
colour suppressed

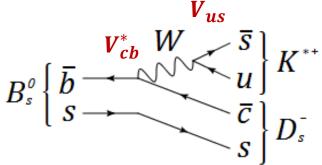
GLW

$$B^{+} \qquad \begin{pmatrix} K^{-}\pi^{+} \\ K^{-}\pi^{+}\pi^{-}\pi^{+} \end{pmatrix}_{D} K^{-}$$

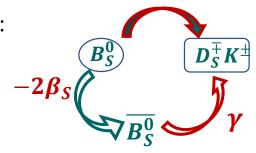
ADS

$$A_{CP} = \frac{\Gamma\{B^- \to D^0 K^-\} - \Gamma\{B^+ \to D^0 K^+\}}{\Gamma\{B^- \to D^0 K^-\} + \Gamma\{B^+ \to D^0 K^+\}} \propto \sin \gamma$$




Time dependent methods $B_s^0 \rightarrow D_s^- K^+$: CKM γ angle

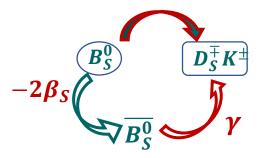
 B_s^0 and $\overline{B_s^0}$ decay to the same final state.


$$V_{CKM} = egin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-ioldsymbol{\gamma}} \ -|V_{cd}| & |V_{cs}| & |V_{cb}| \ |V_{td}|e^{-ieta} & -|V_{ts}|e^{ioldsymbol{eta}_{S}} & |V_{tb}| \end{pmatrix}$$

 B_s^0 and B_s^0 can oscillate into one another.

So we have interference between two processes:

Time dependent methods $B_s^0 \rightarrow D_s^- K^+$: CKM γ angle



We have some experience in decay rate equation...

The probability of B meson decay to final state f is given by the Fermi golden rule:

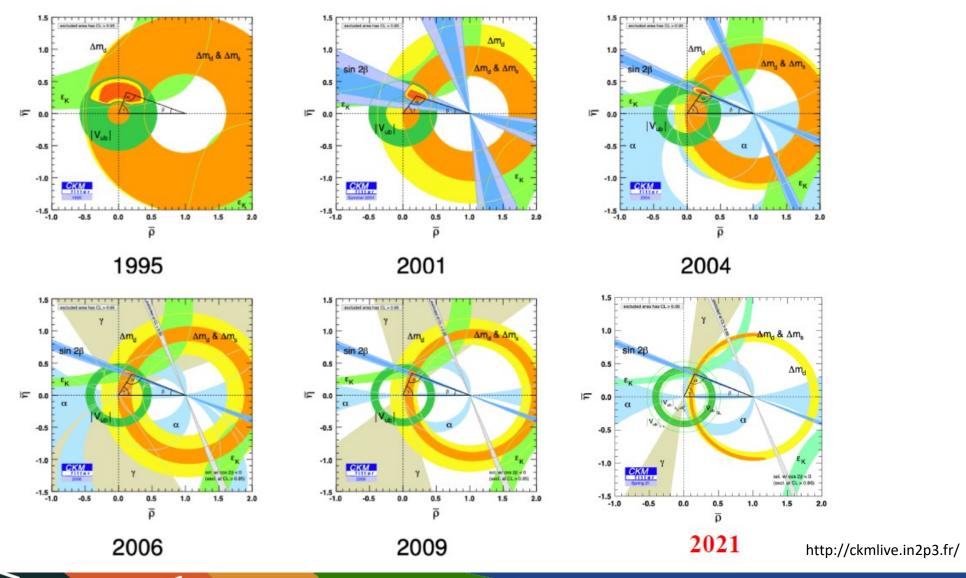
$$\Gamma_{B_s^0 \to f}(t) \sim |\langle f|T|B_s^0(t)\rangle|^2$$

and we can try to calculate it...

$$\Gamma_{B_s^0 \to f}(t) = \left| A_f \right|^2 \left(1 + \left| \lambda_f \right|^2 \right) \frac{e^{-\Gamma_S t}}{2} \cdot \left(\cosh \frac{\Delta \Gamma_S t}{2} + D_f \sinh \frac{\Delta \Gamma_S t}{2} + C_f \cos \Delta m_S t - S_f \sin \Delta m_S t \right)$$

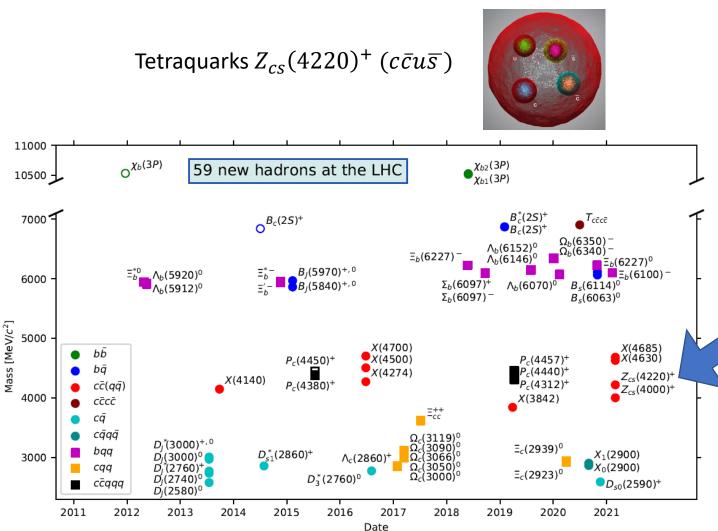
$$\Gamma_{\overline{B}_{S}^{0} \to f}(t) = \left| A_{f} \right|^{2} \left| \frac{p}{q} \right|^{2} \left(1 + \left| \lambda_{f} \right|^{2} \right) \frac{e^{-\Gamma_{S}t}}{2} \cdot \left(\cosh \frac{\Delta \Gamma_{S}t}{2} + D_{f} \sinh \frac{\Delta \Gamma_{S}t}{2} - C_{f} \cos \Delta m_{S}t + S_{f} \sin \Delta m_{S}t \right)$$

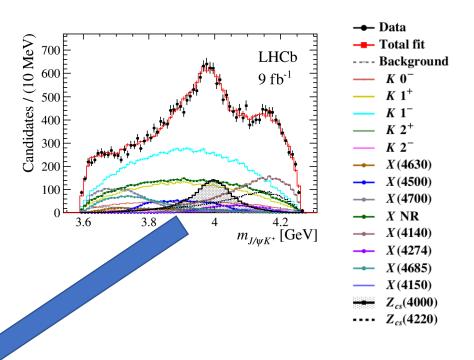
$$D_f = \frac{2Re\lambda_f}{1+\left|\lambda_f\right|^2} \qquad C_f = \frac{1-\left|\lambda_f\right|^2}{1+\left|\lambda_f\right|^2} \qquad S_f = \frac{2Im\lambda_f}{1+\left|\lambda_f\right|^2} \qquad \lambda_f \equiv \frac{1}{\bar{\lambda}_f} = \frac{q\,\bar{A}_f}{p\,\bar{A}_f}$$


$$A_f = \langle f | T | B_s^0 \rangle \qquad \bar{A}_{\bar{f}} = \langle \bar{f} | T | \bar{B}_s^0 \rangle$$

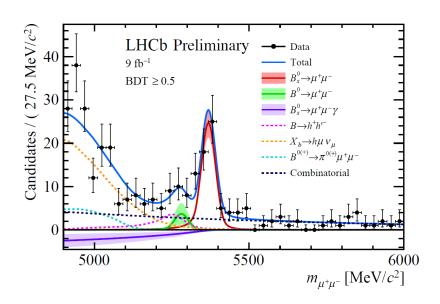
$$\Gamma(P \to f) \propto N_{cand}$$

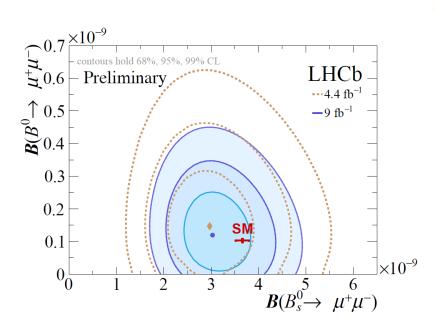
More and more precise

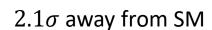


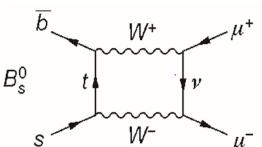


Heavy flavour physics – spectroscopy




The Ultimate Quest to find New Physics

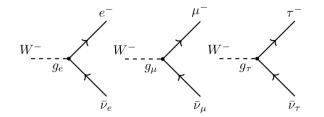

$$B_s^0 o \mu^+\mu^-$$


- Purely leptonic flavour-changing neutral current mediated decay
- In SM tree diagrams are not possible, only pinguins and boxes
- Clean probe of new physics

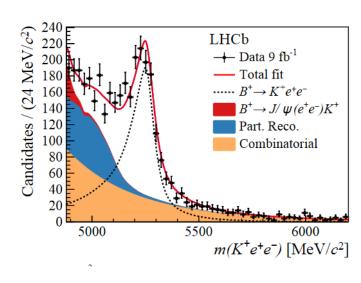
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.69^{+0.37}_{-0.35}) \times 10^{-9}$$

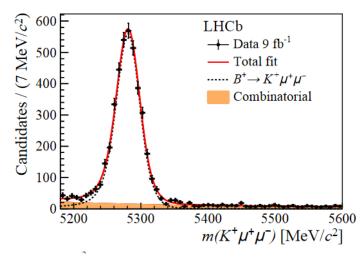
30

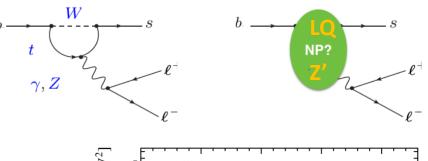
The Ultimate Quest to find New Physics

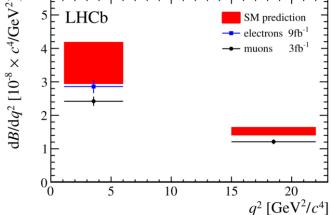

CERN-EP-2021-042 LHCb-PAPER-2021-004 23 March 2021

arXiv:2103.11769


Nature Physics


Lepton universality

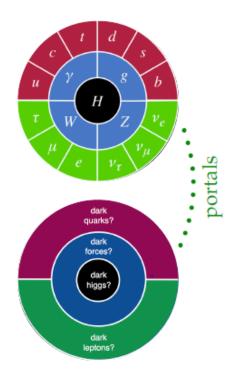



- SM couplings of charged leptons to gauge bosons are identical
- Very clean and precise measurement at electron collider

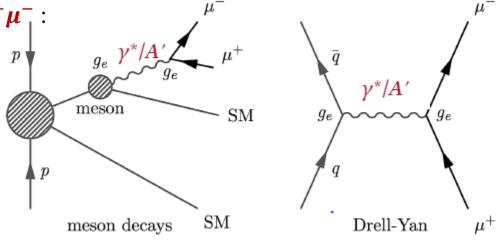
Observables are sensitive to new (virtual) particles

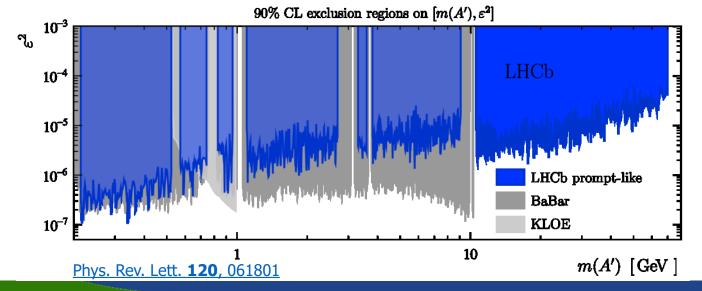
$$R_K = 0.846^{+0.042}_{-0.039} (stat)^{+0.013}_{-0.012} (syst)$$

p-value under SM hypothesis: 0.0010



The Ultimate Quest to find New Physics – Dark Matter



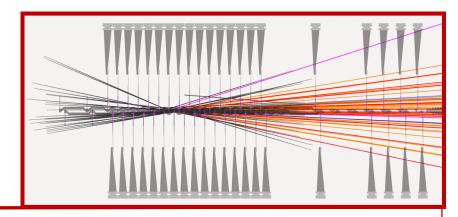

Dark Sectors (neutral under SM forces)

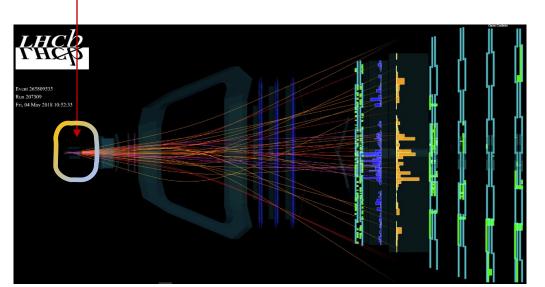
Dark photons searches $A' \rightarrow \mu^+ \mu^-_{\perp}$:

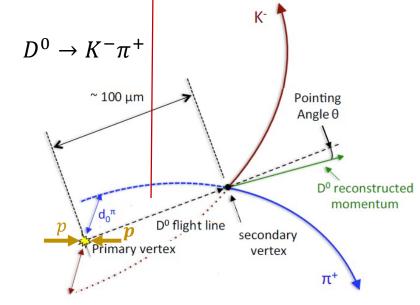
- massive
- massles

IV. How to do precise measurements

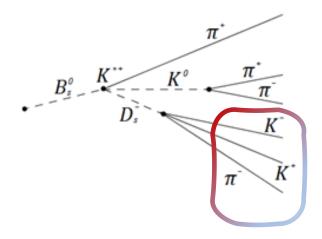
- flavour
- time
- mass

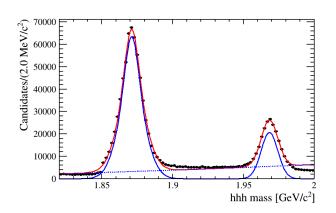


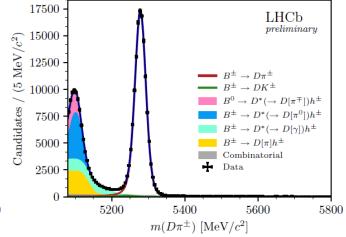



Flavour physics – how we do the measurement?

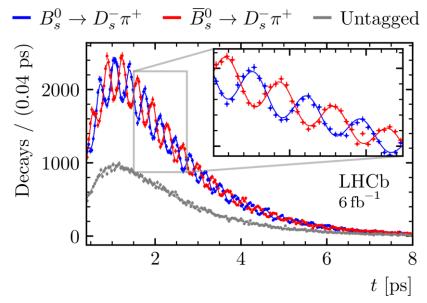
- Point of creation and decay primary and secondary vertex.
- Tracing detector with sensors as close as possible to the proton interaction point.
- Distance between PV and SV is converted into time of life.



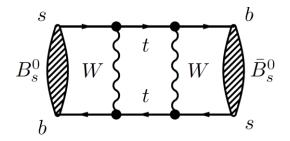

Mass and life-time distribution – selection and fitting


$$m^2 = \left(\sum E\right)^2 - \left(\sum \vec{p}\right)^2$$

- 1) track reconstruction
- 2) particle identification
- 3) pre-selection
- 4) selection
- 5) multivariate analysis
- 6) distribution fitting



Precise determination of the B_s⁰-B_s⁰ oscillation frequency



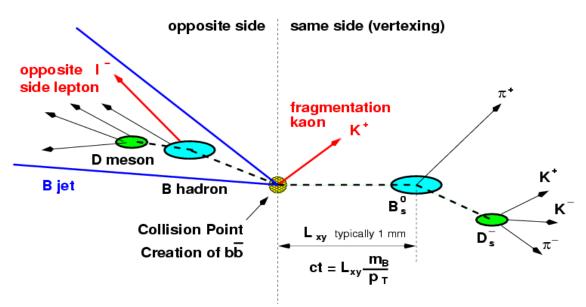
Visual example of the quantum-mechanical nature of our universe

$$P(t) \sim e^{-\Gamma_S t} \left[cosh\left(\frac{\Delta \Gamma_S t}{2}\right) + C cos(\Delta m_S t) \right]$$

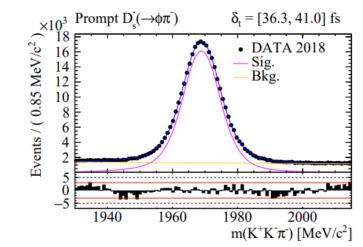
 $\Delta m_S = 17.7683 \pm 0.0051(stat) \pm 0.0032(syst) ps^{-1}$

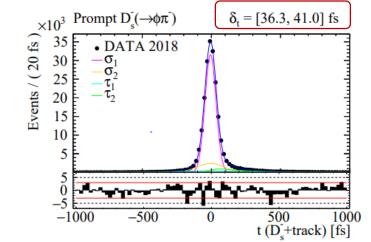
dancer oscillating in front of CP violating mirror. In a given time slot the image in the mirror is different

B^0 or \overline{B}^0 ?



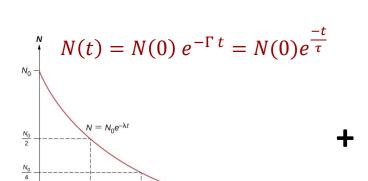
1. Need to determine:

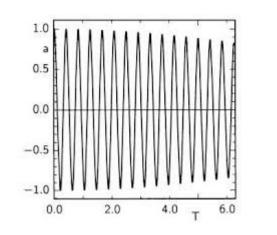

- a) Flavour at production ⇔ tagging
- b) Flavour at decay, from final state
- c) B decay length

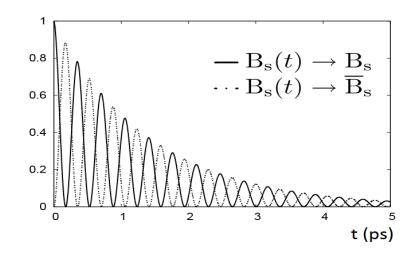

Tagging parameters

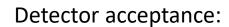
- dilution D = 1 2w
- w = mistag probability
- $\varepsilon = efficiency$
- εD^2 = effective tagging power

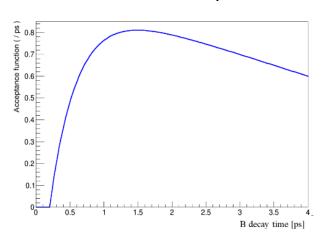
Decay mode tags b flavor at decay

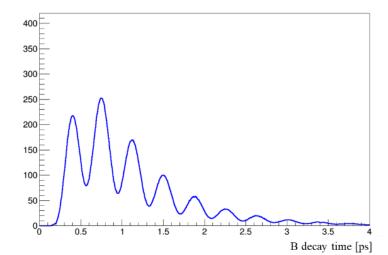


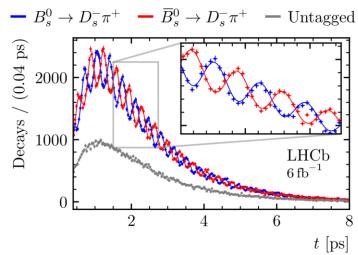



Time measurement

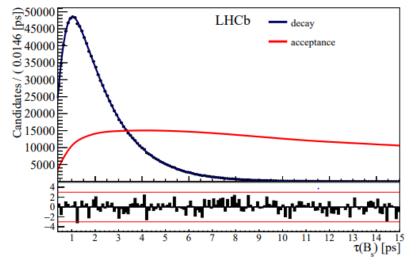





Decay time and oscillations:



Time dependent $B_s^0 \rightarrow D_s^- K^+$ detector effects


real data

time resolution

The finite decay-time resolution of the detector leads to a dilution of the observable oscillation if the resolution is of similar magnitude compared to the oscillation period

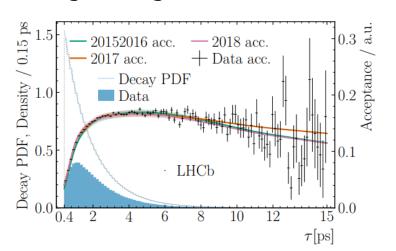
acceptance & cuts

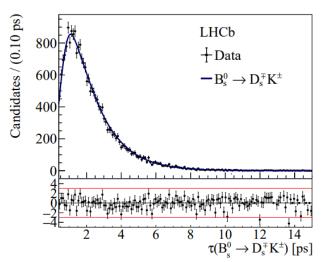
$$\frac{d\Gamma(t)^{acc}}{dt} = \frac{d\Gamma(t)}{dt} \times a(t)$$

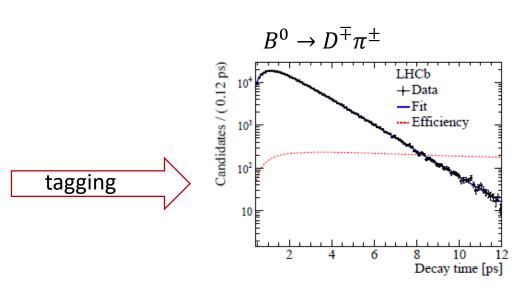
tagging

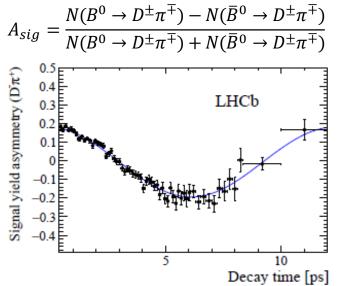
$$\mathcal{P}(t; \delta_t, q, \vec{d}, \vec{\eta}) \sim \varepsilon(t) \cdot P(\eta^{\text{OS}}) \cdot P(\eta^{\text{SS}}) \cdot P(\delta_t) \int R(t - t' | \delta_t) \cdot P_{\text{a}}(t' | q, \vec{d}, \vec{\eta}) dt$$

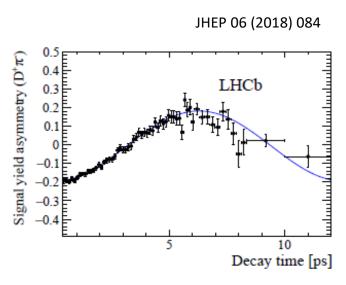
 η : mistag estimation

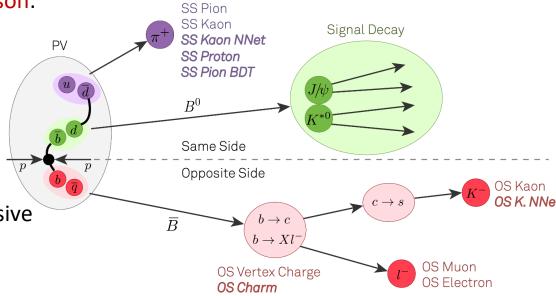

Time dependent $B_s^0 \rightarrow D_s^- K^+$ detector effects




real data


time resolution


acceptance & cuts

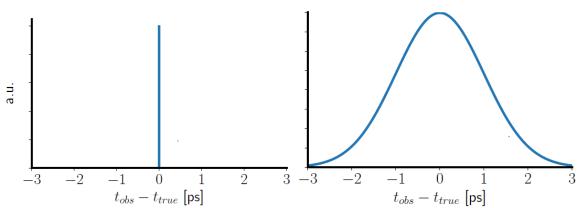

Flavour Tagging

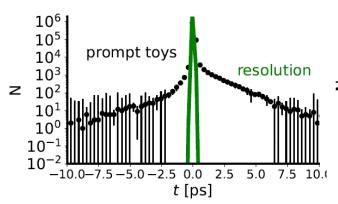
- In LHCb we have two method of tagging the initial flavour of B-meson:
 - same side taggers (SS, about 37% B candidates):
 - search for the additional kaon or pion accompanying the fragmentation of the signal,
 - opposite side taggers (OS, 79%) use:
 - charge of the lepton (e, μ) from semileptonic B decays,
 - charge of kaons from $b \to c \to s$ chain, charge of the inclusive secondary vertex reconstructed from b decay.
 - 31% B mesons are tagged by two taggers.

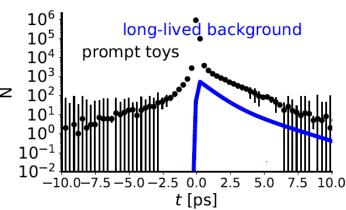
$$\mathcal{E}_{tag} = \frac{N_{tagged}}{N_{tagged} + N_{untagged}} \approx 75\%$$

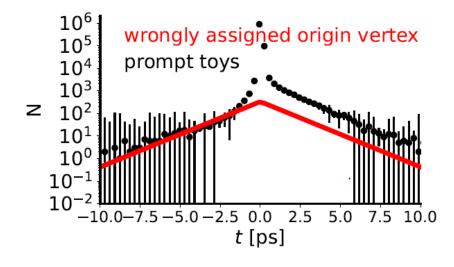

- The fitting parameters are diluted by: $A_{meas} = A_{th}(1 2\omega)$,
 - mistag probability $\omega = \frac{N \ wrong \ tagged}{N \ tagged}$, $\omega \in [0; 0.5]$;
 - effective tagging efficiency $\mathcal{E}_{eff} = \mathcal{E}_{tag}(1-2\omega)^2$ is above 5%.

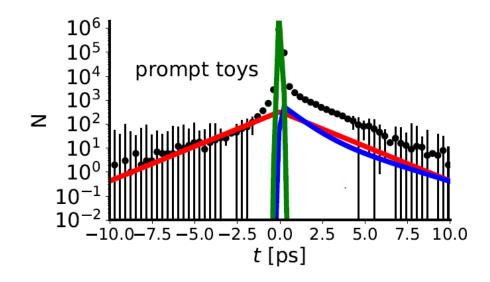
Time dependent $B_s^0 \rightarrow D_s^- K^+$ detector effects

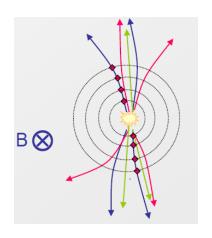




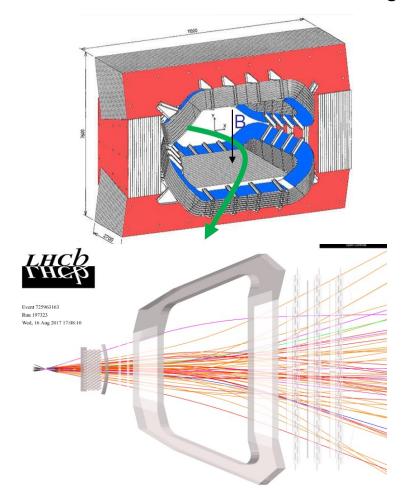


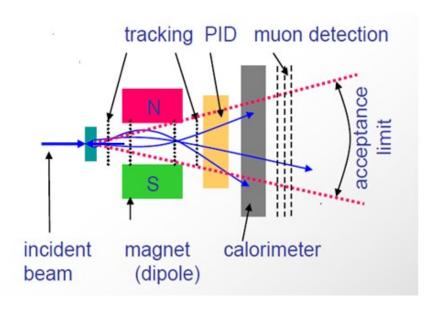

Time measurements - background





Measurement of the momentum

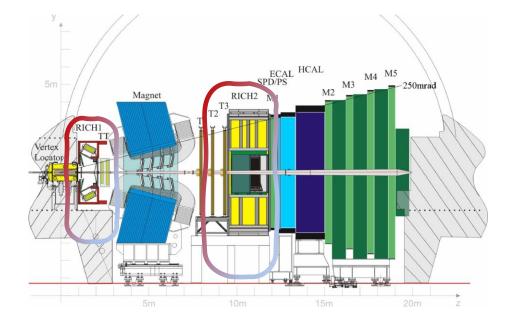

Momentum p measured with the radius of curvature in a magnetic field



$$\overrightarrow{F_L} = q \overrightarrow{v} \times \overrightarrow{B}$$

$$F_L = F_d$$

$$qvB = \frac{mv^2}{R}$$


Identification

- We can identify stable particle, i.e. particles that do not decay in the detector volume, like π, K, p, e, μ
- Particles can have the same charge, spin and other properties.
- To distinguish them, one can use:
 - ✓ Particle mass different particles have different mass.
 - ✓ Lifetime different particles have different lifetimes.
 - ✓ Type of interaction with matter.

RICH – Ring Imaging Cherenkov radiation

Future of Heavy flavour physics – Upgrades

	Run I (2010-12)	Run II (2015-18)	Run III (2022-23)	Run IV-V (2025-28, >30)
Integrated Luminosity	3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	150 fb ⁻¹
Energy √s	7-8 TeV	13TeV	14 TeV	14 TeV

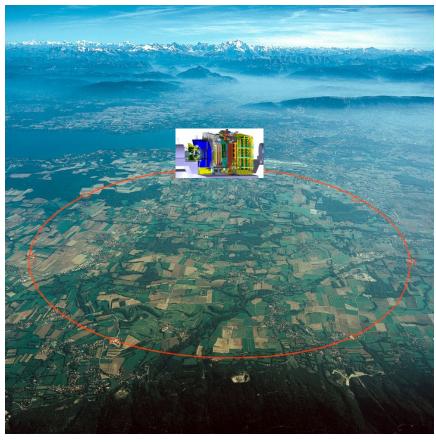
Upgrade of LHCb during LS2

LHCb up to 2018 ≥ 8 fb⁻¹ @ 13 TeV:

- find or rule out the evidences of New Physics and sources of flavour symmetry breaking
- searches of rare decays and exotic states,
- physics in the forward region.

LHCb Upgrade + HL LHC ≥ 50 fb⁻¹ @ 14 TeV:

- increase precision on quark flavour observables,
- aim experimental sensitivities comparable to theoretical uncertainties,



Summary

- There is the Large Hadron Collider that accelerates and collides high-energy protons.
- LHCb spectrometer is designed to study quark transitions in weak interaction to explain matter-antimatter asymmetry and search for New Physics evidences.

Physics @ LHCb – zagadnienia

- 1. LHCb eksperyment do precyzyjnych pomiarów w sektorze ciężkich kwarków.
- 2. Macierz CKM parametryzacja Wolfensteina i trójkąty unitarności.
- 3. Związek między macierzą CKM a Modelem Standardowym.
- 4. Trzy sposoby łamania parzystości kombinowanej CP.
- 5. Metody obserwacji CPV przykład eksperymentalny.
- 6. Czynniki wpływające na pomiar czasu życia i masy:
 - precyzja wyznaczenia wierzchołków (pierwotnych i wtórnych),
 - parametr zderzenia
 - możliwość pomiaru niskich pędów 250-500 MeV/c i p₁<500 MeV/c
 - wyznaczenie pędów z precyzją 0.5% -1% (200 GeV)
 - czasowa zdolność rozdzielcza: 45 fs
 - identyfikacja hadronów w szerokim zakresie pędów (do 100 GeV), ok. 95% efektywności
 - znakowanie (tagging) zapachu mezonu, ok 5% efektywności

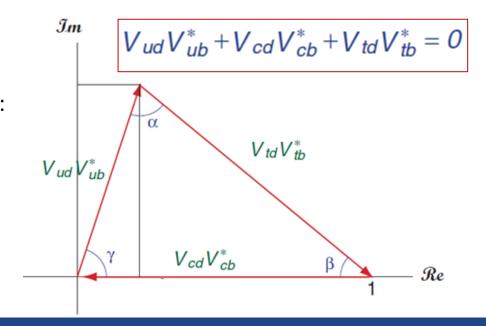
Heavy flavour physics - parameters

- We have two aims: either confirm Standard Model or/and find evidences of Physics Beyond the SM
- Decay rates are used for absolute BR measurements and observation of CPV in decays
- CKM matrix elements are obtained with: decay rates measurement angles....

 V_{CKM} elements are complex numbers (absolute value and phase) proportional to the transition amplitude between quarks

CKM matrix must be unitary, so we have conditions on its parameters:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

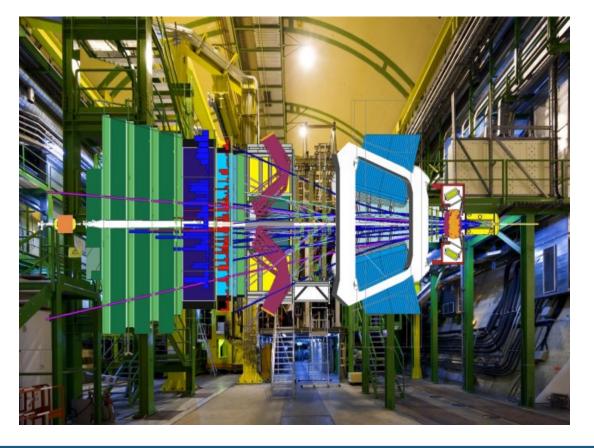

 $V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$ (+ 4 more)

and can be represented as triangles:

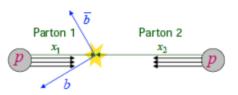
$$V_{ud}^* V_{td} + V_{us}^* V_{ts} + V_{ub}^* V_{tb} = 0$$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$V_{CKM} = \begin{pmatrix} 1 & \lambda & \lambda^3 e^{-\gamma} \\ -\lambda - \lambda^5 e^{-\phi} & 1 & \lambda^2 \\ \lambda^3 e^{-i\beta} & -\lambda e^{-i\beta_s} & 1 \end{pmatrix}$$



LHCb spectrometer


The detector dedicated for studying flavour physics at LHC.

Especially *CP* violation and rare decays of beauty and charm mesons.

Physics program:

- CP Violation ,
- Rare B decays,
- B decays to charmonium and open charm,
- Charmless B decays,
- Semileptonic B decays,
- Charm physics,
- B hadron and quarkonia,
- QCD, electroweak, exotica ...

$$\sigma_{b\bar{b}} = (75.3 \pm 14.1) \, \mu b$$
 $\sigma_{c\bar{c}} = (1419 \pm 133) \, \mu b$
 \sqrt{s} =7 TeV

Excellent performance:

3 fb⁻¹ accumulated in RUN I, 3.26 fb⁻¹ in Run II;

Excellent time (50 fs) and Impact Parameter resolution (20 μ m);

Precise tracking: $\delta p/p \sim 0.5 - 1\%$ (up to 200 GeV);


Hadronic identification 2-100 GeV/c

Energy measurement

- Electromagnetic calorimeter used for the measurement of electron and photon energy
- Hadron calorimeter helps to distinguish hadrons

CPV in Standard Model

CPV in Standard Model

Track reconstruction*

* see additional slides!

