

CP Violation In Heavy Flavour Physics

Agnieszka Obłąkowska-Mucha, Tomasz Szumlak AGH UST Kraków

2021

The CKM Matrix

1. In two generation system (1964) – one angle – no CP violation
2. Third generation proposed by Kobayashi & Maskawa (1973) opened the
Pandora's box of new ideas how to measure CPV.
3. Many possible parametrizations:
a) original K-M:
$$s_{l} = \sin \vartheta_{l}$$
; $s_{l} = \cos \vartheta_{l}$
b) Standard representation (PDG proposal):
 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{23} & s_{13}e^{i\delta} \\ s_{152} & c_{152}c_{3} + c_{253}e^{i\delta} & c_{152}s_{3} + s_{2}c_{3}e^{i\delta} \\ s_{152} & c_{152}c_{3} + c_{253}e^{i\delta} & c_{152}s_{3} - c_{2}c_{3}e^{i\delta} \\ s_{152} & c_{152}c_{3} + c_{253}e^{i\delta} & c_{152}s_{3} - c_{2}c_{3}e^{i\delta} \\ s_{152}c_{23} - c_{12}c_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & s_{23}c_{13} \end{pmatrix}$
The CKM matrix is described by three rotation angles and a complex phase.

CKM matrix parametrization

- 4. Wolfenstein parametrization (1983):
 - a) matrix elements are expanded in terms of $\sin \vartheta_i \equiv \lambda$;
 - b) from kaons sector we have $V_{us} = \lambda = 0.22$, and $V_{ud} = (1 \lambda^2/2)$
 - c) from B-lifetime: $V_{cb} = 0.04 0.006 = A\lambda^2$
 - d) let's keep V_{ud} , V_{us} , V_{tb} real expressed in term of four real parameters : λ , A, ρ , η
 - e) the only complex components are in V_{ub} and V_{td} , third row/column are of order smaller (CPV effects) $A\lambda^3(\varrho i\eta)$
 - f) For the CP violation one phase should be measurable, so η cannot be zero

$$\begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A \lambda^3 (\rho - i\eta + i\eta \frac{\lambda^2}{2}) \\ -\lambda & 1 - \frac{\lambda^2}{2} - i\eta A \lambda^4 & A \lambda^2 (1 + i\eta \lambda^2) \\ A \lambda^3 (1 - \rho - i\eta) & -A \lambda^2 & 1 \end{pmatrix}$$

$$|V_{ub}|e^{-i\gamma}$$

$$\begin{bmatrix} |d'\rangle \\ |s'\rangle \\ |b'\rangle \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{bmatrix}$$

Higher order in CKM

 β and β_s are weak phases in B^0 and B^0_s mixing,

 β and γ are the CKM angles (see next slides).

They are ones of the most important observables in experimental heavy flavour physics

AG H

The CKM matrix is unitary $V_{CKM}^{-1} = V_{CKM}^{\dagger}^{\dagger}$ – this give us 12 orthogonality conditions:

$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1$$

$$|V_{cd}|^{2} + |V_{cs}|^{2} + |V_{cb}|^{2} = 1$$

$$|V_{td}|^{2} + |V_{ts}|^{2} + |V_{tb}|^{2} = 1$$

$$|V_{ud}|^{2} + |V_{cd}|^{2} + |V_{td}|^{2} = 1$$

$$|V_{us}|^{2} + |V_{cs}|^{2} + |V_{ts}|^{2} = 1$$

$$|V_{ub}|^{2} + |V_{cb}|^{2} + |V_{tb}|^{2} = 1$$

 $V_{ud}^{*}V_{cd} + V_{us}^{*}V_{cs} + V_{ub}^{*}V_{cb} = 0$ $V_{ud}^{*}V_{td} + V_{us}^{*}V_{ts} + V_{ub}^{*}V_{tb} = 0$ $V_{cd}^{*}V_{td} + V_{cs}^{*}V_{ts} + V_{cb}^{*}V_{tb} = 0$ $V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0$ $V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$ $V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0$

The orthogonality conditions can be regarded as a triangle condition – CKM matrix elements are complex numbers, so their sum is simply a sum of three vectors:

 $\begin{array}{cccc} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{array}$

But most of them have magnitudes of very different size and are currently useless from experimental point of view :

$$V_{ud}^{*}V_{cd} + V_{us}^{*}V_{cs} + V_{ub}^{*}V_{cb} = 0 \qquad \lambda, \lambda, \lambda^{5}$$

$$V_{ud}^{*}V_{td} + V_{us}^{*}V_{ts} + V_{ub}^{*}V_{tb} = 0 \qquad \lambda^{3}, \lambda^{3}, \lambda^{3}$$

$$V_{cd}^{*}V_{td} + V_{cs}^{*}V_{ts} + V_{cb}^{*}V_{tb} = 0 \qquad \lambda^{4}, \lambda^{2}, \lambda^{2}$$

$$V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0 \qquad \lambda, \lambda, \lambda^{5}$$

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \qquad \lambda^{3}, \lambda^{3}, \lambda^{3} \qquad \square$$

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0 \qquad \lambda^{4}, \lambda^{2}, \lambda^{2} \qquad -$$

The most attractive are two triangles:

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

$$V_{ud}^* V_{td} + V_{us}^* V_{ts} + V_{ub}^* V_{tb} = 0$$

Unitarity of CKM matrix

But still two promising left:

$$V_{ud}^{*}V_{cd} + V_{us}^{*}V_{cs} + V_{ub}^{*}V_{cb} = 0 \qquad \lambda, \lambda, \lambda^{5}$$

$$V_{ud}^{*}V_{td} + V_{us}^{*}V_{ts} + V_{ub}^{*}V_{tb} = 0 \qquad \lambda^{3}, \lambda^{3}, \lambda^{3}$$

$$V_{cd}^{*}V_{td} + V_{cs}^{*}V_{ts} + V_{cb}^{*}V_{tb} = 0 \qquad \lambda^{4}, \lambda^{2}, \lambda^{2}$$

$$V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0 \qquad \lambda^{3}, \lambda^{3}, \lambda^{3}$$

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0 \qquad \lambda^{4}, \lambda^{2}, \lambda^{2}$$
, The "unitary triangle!

Using Wolfenstein parametrization, we can draw them on complex plane :

$$V_{ud}V_{ub}^* = A\lambda^3 (1 - \lambda^2/2)(\varrho + i\eta)$$
$$V_{cd}V_{cb}^* = -A\lambda^3$$
$$V_{td}V_{tb}^* = A\lambda^3 (1 - \varrho - i\eta)$$

if sides are divided by $V_{cd}V_{cb}^*$ the UT looks like that:

 $1 - \lambda^2/2$ λ $A\lambda^3(\rho-i\eta)$
 $-\lambda$ $1 - \lambda^2/2$ $A\lambda^2$
 $A\lambda^3(1-\rho-i\eta)$ $-A\lambda^2$ 1

The unitary triangle

And another unitarity triangle

1. HEP has always two main aims:

to confirm the SM

or

to find evidences for Physics Beyond the Standard Model.

- 2. Precise measurement of the UTs are able to fulfill both....
 - a) If the triangle remains triangular we have three generation of quarks with small CP violation effects.
 - b) If one angle is "open"- fourth generation?
 - c) If an angle is greater then predictions new particles were exchanged?
- 3. So the main purpose in WI is now to over constrain the UTs measure all sides and angles with great precision and to compare them with SM predictions.

HOW?

With charm and beauty mesons decays.

WHERE?

At the LHCb spectrometer.

Sides of the UT can be measured with:

V _{ud}	eta-decay	Nuclear physics	$\cos \vartheta_i$
V _{us}	K decay	$K^{+0} \to \pi^{0+} l^+ \nu_l$	$\sin \vartheta_i$
V _{cd}	Neutrino scatering	$ u_\mu d o \mu^+ c$	$\cos \vartheta_i$
V _{cs}	Charm decay	$D_S^+ \to \mu^+ \nu_\mu$	BR
V _{ub}	B decay	$B^0 \to \pi^- e^+ \nu_e$	BR
V _{cb}	B decay to charm		
V _{td}	B mixing		

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

$$b \rightarrow u$$
transitions
$$b \rightarrow c$$

$$B^{0} \text{ mixing}$$

Angles of the UT can be measured with:

$B^0 \to J/\psi K_S$	$\sin 2\beta$
$B^0 \rightarrow \pi^+\pi^-$	$\sin 2\alpha$
$B_S^0 \to D_S^+ K^-$	sin 2γ
Weak phase	β_{S}

Short history of flavour physics:

- 1. First B physics experiments were build on symmetric electron-positron collider:
 - Petra (DESY) in 80'ties
 - LEP at CERN in 1994-2000
- 2. Then two asymmetric B-factories (currently not taking data):
 - Belle (Japan)
 - BaBar (SLAC, USA)
- 3. LHC
 - LHCb dedicated B physics experiment
 - CMS, ATLAS also interested in heavy flavours

Market with diagrams

CPV – how to measure?

The experiment – LHCb spectrometer

CPV in Heavy Flavour Physics

Mixing of B^0 and B^0_S meson

- 1. Like neutral kaon system, neutral B mesons may also oscillate:
- 2. The top quark transition has the dominant amplitude:

$$A \propto \sum$$
 all pair of quarks $A_{bi}A_{jb}^*$

$$\begin{pmatrix} B^{0} = d\bar{b} \\ \overline{B^{0}} = \bar{d}b \end{pmatrix}$$
$$\begin{pmatrix} B^{0}_{S} = s\bar{b} \\ \overline{B^{0}_{S}} = \bar{d}s \end{pmatrix}$$

	$B^0 = d\overline{b} \ \overline{B^0} = \overline{d}b$	$B_S^0 = s\overline{b} \ \overline{B_S^0} = \overline{d}s$
Oscillations parameter	$x_d = \frac{\Delta m_d}{\overline{\Gamma_d}} \approx 0.72$	$x_s = \frac{\Delta m_s}{\overline{\Gamma_s}} \approx 24$
Large mass difference	$\begin{array}{l} \Delta m_d \approx 3.3 \cdot 10^{-13} \; GeV \\ \approx 0.5 \; ps^{-1} \end{array}$	$\Delta m_s \approx 17.8 \ ps^{-1}$
Small lifetime difference	$x_d = \frac{\Delta \Gamma_d}{\overline{\Gamma_d}} \approx 5 \cdot 10^{-3}$	$x_d = \frac{\Delta \Gamma_s}{\overline{\Gamma_s}} \approx 0.1$
$\frac{q}{p}$ - sensitivity to weak phase	$\frac{q}{p} = \frac{V_{td}V_{tb}^*}{V_{tb}V_{td}^*} \sim \beta$	$\frac{q}{p} = \frac{V_{ts}V_{tb}^*}{V_{tb}V_{ts}^*} \sim \beta_s$

AGH

1. The weak B-meson states are a combination of flavour states:

$$|B_L\rangle = p|B^0\rangle + q|\overline{B^0}\rangle \qquad |B_H\rangle = p|B^0\rangle - q|\overline{B^0}\rangle$$

the eigenstates of the effective Hamiltonian, with definite mass and lifetime, are mixtures of the flavour eigenstates and β is also called the **B**⁰ mixing phase

3. The states B_L and B_H are lighter and heavier state, with almost identical lifetimes: $\Gamma_L = \Gamma_H \equiv \Gamma$

4. The mass difference Δm between them is greater then in kaons.

5. If we write the flavour states as a combination of weak states:

 $|B^{0}\rangle = 1/\sqrt{2} \left[|B_{L}\rangle + |B_{H}\rangle\right]$

then the wavefunction evolves according to the time dependence of physical states:

 $|B(t)\rangle = 1/\sqrt{2}\{a(t)|B_L\rangle + b(t)|B_H\rangle\}$

where time dependence of coefficients is:

$$\boldsymbol{a}(\boldsymbol{t}) = e^{-i(m_L - \frac{i}{2}\Gamma)t} \qquad \boldsymbol{b}(\boldsymbol{t}) = e^{-i(m_H - \frac{i}{2}\Gamma)t}$$

Now substitute a(t) and b(t) and $|B_{L,H}\rangle$ into time-dependent wave function. Do not forget to express mass states as a combination of flavour states....

$$\begin{split} |B_L\rangle &= 1/\sqrt{2} \left[|B^0\rangle + e^{-i2\beta} |\overline{B^0}\rangle \right] \\ |B_H\rangle &= 1/\sqrt{2} \left[|B^0\rangle - e^{-i2\beta} |\overline{B^0}\rangle \right] \end{split}$$

Mixing of B^0 and B^0_S meson

AG H

6. Now substitute a(t) and b(t) and $|B_{L,H}\rangle$ into time-dependent wave function:

$$|B(t)\rangle = 1/\sqrt{2}\{a(t)|B_L\rangle + b(t)|B_H\rangle\}$$
$$a(t) = e^{-i(m_L - \frac{i}{2}\Gamma)t} \qquad b(t) = e^{-i(m_H - \frac{i}{2}\Gamma)t}$$

 $\begin{aligned} |B_L\rangle &= 1/\sqrt{2} \left[|B^0\rangle + e^{-i2\beta} |\overline{B^0}\rangle \right] \\ |B_H\rangle &= 1/\sqrt{2} \left[|B^0\rangle - e^{-i2\beta} |\overline{B^0}\rangle \right] \end{aligned}$

.... and calculate the probabilities of the state to stay as a $|B^0\rangle$

$$P(B^{0}(t=0) \to B^{0};t) = |\langle B^{0}(t)|B^{0}\rangle|^{2} = ... = e^{-\Gamma t} \cos^{2}\left(\frac{\Delta m}{2}t\right)$$

7. The same calculation can be done for B_S^0

LHCb: $\Delta m_S = 17.768 \pm 0.023 \ ps^{-1}$

Experimental challenges for mixing

1. Need to determine:

Weak phase ϕ_S

The weak phase ϕ_S can be extracted from tagged Bs decays to CP eigenstates: $B_S \rightarrow J/\psi \phi$

Golden channel for sin 2β

AG H

- 1. The process $B^0 \to J/\psi K_S$ is called the "golden mode" for measurement of the β angle:
 - a) clean theoretical description,
 - b) clean experimental signature,
 - c) large (for a B meson) branching fraction of order $\sim 10^{-4}$.
- 2. This is a process with interference of amplitudes with and without mixing:

3. The β angle sensitivity comes from the $B^0 \leftrightarrow \overline{B^0}$ mixing due to the $\overline{t} \to \overline{d}$ and $t \to d$ transitions.

Golden channel for $\sin 2\beta$

4. We need to calculate the asymmetry of the type: $A_{CP}(t) = \frac{1}{\Gamma_f} - \frac{1}{\Gamma_f}$ and remember that decay rate depends on (see lect 4): $\Gamma(B \to f) \propto |A_f|^2 = |A_1 + A_2|^2$

Essence of amplitude interference

In case of only one decay amplitude – the decay rates are equal:

 $\boldsymbol{\Gamma}(\boldsymbol{P} \to \boldsymbol{f}) = \boldsymbol{\Gamma}(\overline{\boldsymbol{P}} \to \overline{\boldsymbol{f}})$

and no CP violation occurs. For two amplitudes the decay rates may differ and the asymmetry is sensitive to relative phase

$$A = \frac{\left|\overline{A_f}\right|^2 - \left|A_f\right|^2}{\left|\overline{A_f}\right|^2 + \left|A_f\right|^2}$$

- 1. The CKM γ angle can be measured through plenty of processes:
 - a) time integrated decays (GLW or ADS method)
 - b) time dependent CP asymmetries in transition $b \rightarrow c \bar{u} d(s)$
- 2. We consider B decays of a type $B \rightarrow DK$ with different charges and B flavours:

$$B^{0} \rightarrow D^{+}K^{-}$$

$$B^{+} \rightarrow D^{*}K^{+}$$

$$B^{0}_{s} \rightarrow D^{-}_{s}K$$

$$B^{0}_{s} \rightarrow D^{-}_{s}K^{*+}$$

$$B^{0}_{s} \rightarrow D^{*-}_{s}K^{*+}$$

$$B_q \to D_q h_q$$

Time integrated method

This is a measurement of angle γ with the processes $B^{\pm} \rightarrow D^0 K^{\pm}$. Plenty of methods which differ by the final states Interference between two diagrams:

$$A_{CP} = \frac{\Gamma\{\boldsymbol{B}^- \to D^0 K^-\} - \Gamma\{\boldsymbol{B}^+ \to D^0 K^+\}}{\Gamma\{\boldsymbol{B}^- \to D^0 K^-\} + \Gamma\{\boldsymbol{B}^+ \to D^0 K^+\}} \propto \sin \gamma$$

Time dependent $B_s^0 \rightarrow D_s^- K$

This family of processes are very experimentally challenging:

- six hadrons in the final state very good PID and mass resolution
- high-P_T tracks and displaced vertices *efficient trigger*
- efficient tagging and good tagging power (small mistag rate)
- good decay-time resolution

Time dependent $B_s^0 \rightarrow D_s^- K$

1. B_s^0 and $\overline{B_s^0}$ decay to the same final state.

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix}$$

2. B_s^0 and $\overline{B_s^0}$ can oscillate into one another.

3. So we have interference between two processes:

Time dependent $B_s^0 \rightarrow D_s^- K$

 $D_S^{\pm}K^{\pm}$

 $-2\beta_s$

good luck!

We have some experience in decay rate equation...

The probability of B meson decay to final state f is given by the Fermi golden rule:

 $\Gamma_{B_s^0 \to f}(t) \sim |\langle f|T|B_s^0(t)\rangle|^2$

and we can try to calculate it...

$$\Gamma_{B_s^0 \to f}(t) = \left|A_f\right|^2 \left(1 + \left|\lambda_f\right|^2\right) \frac{e^{-\Gamma_s t}}{2} \cdot \left(\cosh\frac{\Delta\Gamma_s t}{2} + D_f\sinh\frac{\Delta\Gamma_s t}{2} + C_f\cos\Delta m_s t - S_f\sin\Delta m_s t\right)$$

$$\Gamma_{\bar{B}_{S}^{0} \to f}(t) = \left|A_{f}\right|^{2} \left|\frac{p}{q}\right|^{2} \left(1 + \left|\lambda_{f}\right|^{2}\right) \frac{e^{-\Gamma_{S}t}}{2} \cdot \left(\cosh\frac{\Delta\Gamma_{S}t}{2} + D_{f}\sinh\frac{\Delta\Gamma_{S}t}{2} - C_{f}\cos\Delta m_{s}t + S_{f}\sin\Delta m_{s}t\right)$$

$$D_f = \frac{2Re\lambda_f}{1+|\lambda_f|^2} \qquad C_f = \frac{1-|\lambda_f|^2}{1+|\lambda_f|^2} \qquad S_f = \frac{2Im\lambda_f}{1+|\lambda_f|^2}$$

$$\lambda_f \equiv \frac{1}{\bar{\lambda}_f} = \frac{q}{p} \frac{\bar{A}_f}{A_f} \qquad A_f = \langle f | T | B_s^0 \rangle \qquad \bar{A}_{\bar{f}} = \langle \bar{f} | T | \bar{B}_s^0 \rangle$$

These relations should lead to the distribution like this:

... but various detector effects have a major impact on time dependent decay rates:

Time dependent $B_s^0 \rightarrow D_s^- K$ detector effects

Master Thesis of B.Bednarski **AGH**

A G H

Roofit simulation of 10 years of LHCb data taking for this process....

AG H

When we write the equation for amplitudes and matrix elements we use standard Feynman rules:

- *V_{ud}* when d-quark is incoming or anti-d is outgoing,
- V_{ud}^* if incoming u quark or outgoing anti-u quark